## Temperature Influence on Phytoplankton Community Growth Rates

## **Objective:**

To quantify the relationship between temperature and phytoplankton growth rates at the global scale and to improve the marine biogeochemical response to climate change in Earth system models (ESMs).

## Approach:

- Compiled observation dataset of *phytoplankton community growth rates* from natural populations and analyzed them in conjunction with temperature to fit two growth models.
- Extracted this community growth rate vs.
  temperature relationship (apparent Q<sub>10</sub>) from
  ESMs and satellite-based biogeochemical models
  for comparison to observed trends.

## **Results/Impacts:**

- Both Arrhenius and  $Q_{10}$  growth models fit well.
- The optimal  $Q_{10}$  relation ( $Q_{10} = 1.5$ ) was below the value of ~2 often used in models.
- Models using high  $Q_{10}$  values will overestimate growth rate increases in a warming ocean.
- Forms a new diagnostic metric for evaluating the ocean biogeochemical component in ESMs and other ocean productivity models.



Observational estimates of phytoplankton community growth rate averaged over 3 degree windows (left panel) and the raw data (right panel). Red/green lines show best fit to the binned observations ( $Q_{10} = 1.5$ ). Blue line shows trend with  $Q_{10} = 2.0$ .

Sherman, E., J. K. Moore, F. Primeau, and D. Tanouye (2016), Temperature influence on phytoplankton community growth rates, *Global Biogeochem. Cycles*, 30(4):590–599, doi:<u>10.1002/2015GB005272</u>.

Los Alamos

**BGC Feedbacks** 



