

CO₂ fertilization of terrestrial photosynthesis inferred from site to global scales

Chi Chen^{1,2*} (presenter), William J. Riley¹, I. Colin Prentice³, Trevor F. Keenan^{1,2*}

¹Lawrence Berkeley National Laboratory; ²UC Berkeley; ³Imperial College London

RUBISCO Biogeochemistry Science Seminar December 2021

The research questions

 When and how can we detect a signal of CO₂ fertilization effect (CFE) emerge in long-term measurement of carbon flux from globally distributed networks?

2. Can we accurately constrain CFE using satellite observations / meteorological reanalysis data?

First-order CO₂ fertilization effect

- Terrestrial photosynthesis is quantified by terrestrial Gross Primary Productivity (GPP).
- Exchange of CO₂ and water vapor fluxes between the land and the atmosphere.
- Both fluxes can be described by the Fickian gas diffusion.

Fertilization: c_a is increasing
 @2.1 ppm yr⁻¹

Optimization: carbon-water economy

Plants adjust g and c_i to optimize the gas exchange problem!

```
Loss: Water flux

f_e = 1.6g(e_i - e_a) \approx 1.6gD
```


Figure credit: Wang et al. (2020)

Major challenges

The magnitude of the CO_2 fertilization effect (CFE) on terrestrial GPP is not directly observed and is subject to confounding effects of (1) climate variability & (2) model representations.

Figure credit: Zheng et al. (2020)

Figure credit: Harverd et al. (2020) 5

Constrain the CFE at the leaf level

Eco-Evolutionary Optimality (EEO) model to constrain the **partial differential** GPP sensitivity to CO₂.

Constrain the photosynthetic capacity

The Farquhar photosynthesis model

- Light-saturated: $A_c = \frac{V_{cmax}(c_i \Gamma^*)}{K + c_i} R_d$ Light-limited $: A_j = \frac{J(c_i \Gamma^*)}{4(c_i + 2\Gamma^*)} R_d$

•
$$f_c = \min(A_c, A_j)$$

Balancing the nutrient allocation: apply the coordination hypothesis to constrain reference V_{cmax} and J_{max}

$$\overline{A_{c,peak}} = \overline{A_{j,peak}}$$

Climatological mean environment of the peak LAI month

No need about the biome type information!

The canopy upscaling factor:

- Big leaf
- Least square with FLUXNET
- No interannual variation

GPP and CFE are constrained by 7 variables:

- *C*_a
- Satellite LAI
- *T_a*
- SWC
- *q*_a
- *SW*_{in}
- *P*

A follow-up work: EEO model + a full canopy radiative transfer

Reproducing GPP trend and interannual variability (IAV)

- EEO-inferred: Evo-Evolutionary Optimality model
- EC-inferred: FLUXNET2015

Overall trend attribution

- >40% of the overall GPP trend across the sites is due to CO_2
- 4.5 gC m⁻²yr⁻²

Diagnosed CFE for each site

Analytical constraints for individual sites

•
$$CFE = \frac{\partial GPP}{\partial c_a} \times \Delta c_a$$

- Δ represents the trend
- Median CFE = $4.9 \text{ gC m}^{-2} \text{ yr}^{-2}$
- CFE from the univariate analysis
 = 4.5 gC m⁻² yr⁻²

Diagnosed the IAV for each site

$oldsymbol{eta}_{co2}$ at the global scale

- Inputs: ERA5 + MODIS
 LAI
- Canopy upscaling calibration: multiple satellite GPP products
- CO₂ trend @ ~2.1 ppm
 yr⁻¹
- Global average = 4.4
 gC m⁻²yr⁻¹ppmv⁻¹

Within biome β_{co2} variation driven by climate

Bars: mean β_{co2} for each biome type

- β_{co2} is a function of climate and CO₂, but CO₂ are prescribed without spatial variations
- No sig. temporal fluctuations due to climate variability

Relative CFE is conserved

GPP source used to calibrate the EEO framework	EBF	OF	SW	GRA	CRO	C4	All biomes
Ensemble mean of 8 satellite-derived GPP	4.76	4.27	4.75	5.02	5.06	1.35	4.12
BEPS	4.89	4.50	4.85	5.18	5.35	1.41	4.36
BESS	4.85	4.29	4.76	5.16	5.14	1.38	4.24
FluxCom	4.81	4.35	4.77	4.85	4.91	1.28	4.07
MOD-C55	4.76	4.37	4.88	5.19	5.12	1.37	4.20
MOD-C6	4.69	4.36	4.89	5.22	5.11	1.38	4.17
Pmodel-s0	4.71	4.06	4.52	4.66	4.71	1.25	3.91
PR-model	4.96	4.07	4.60	4.76	4.95	1.34	4.08
VPM	4.67	4.31	4.88	5.23	5.08	1.34	4.03

• Relative $CFE = \frac{\Delta GPP_{co2}}{GPP} \times 100\%$

Chen et al., under review

 ~4.1% GPP per decade relative to corresponding GPP climatological mean

Comparison to DGVMs and satellite GPP

A1: EEO-inferred, total GPP trend A2: EEO-inferred, CO2-induced GPP trend

B1: DGVMs, total GPP trend B2: GDVMs, CO2-induced GPP trend

C1: Satellite-derived, total GPP trend 16

Comparison to DGVMs and satellite GPP

C1: Satellite-derived, total GPP trend 17

Take home messages

- A strong CO₂ fertilization effect is detectable in the eddy covariance networks
- CO₂ fertilization effect can also be constrained at the global scale
- Our framework further provides the opportunity to diagnose the sensitivity of GPP to multiple factors

Thank you!

Questions -> (chenchi@lbl.gov)