Parameter Calibration with Neural Network-Based Emulation of a Land Model

Katie Dagon (NCAR), Ben Sanderson (CICERO/NCAR), Rosie Fisher (CICERO/NCAR), and Dave Lawrence (NCAR)

> Biogeochemistry Science Friday Seminar November 12, 2021

Uncertainty in Land Model Projections

Uncertainty in Land Model Parameters

Schematic of NCAR's Community Land Model (CLM), version 5

Lawrence et al. (2019)

Example of Parameter Uncertainty: Stomatal Conductance

Image: evolution.berkeley.edu

Medlyn et al. (2011)

Example of Parameter Uncertainty: Stomatal Conductance

Medlyn et al. (2011)

11/12/21

NCAR

UCAR

Data from Lin et al. (2015)

Community Land Model Parameters

- Biophysical features (e.g., surface energy balance, hydrology, carbon uptake)
- Individual parameter uncertainty ranges determined by literature review, updated observations
- Parameter selection based on a series of sensitivity tests with objective metrics

iters, while water and	Name	Parameter Description	Biophysical Process		
irough a leaf's stomata.	medlynslope	Slope of stomatal conductance- photosynthesis relationship	Stomatal conductance and photosynthesis	Evaporation Transpiration	
	dleaf	Characteristic dimension of leaves in the direction of wind flow	Leaf boundary layer resistance		
	kmax	Plant segment maximum conductance	Plant hydraulic stress	Iblimation Evapor	
	fff	Decay factor for fractional saturated area	Surface runoff	Soil Water table Sub- Saturated Zone r	
	dint	Fraction of saturated soil for moisture value at which dry surface layer initiates	Soil evaporation		
	baseflow_scalar	Scalar multiplier for base flow rate	Sub-surface runoff		

Dagon et al. (2020)

Carbon dioxid oxygen exit.

Can we use machine learning to calibrate model parameters?

Hand-tuning parameter values takes a long time (many model runs, trial and error).

11/12/21

NCAR

IICAR

Machine Learni

Scier

Image: <u>https://becominghuman.ai/an-introduction-to-machine-learning-33a1b5d3a560</u>

11/12/21

NCAR

UCAR

a Object classification and localization

Earth science tasks

Short-term forecasting

Reichstein et al. (2019)

A machine learning algorithm is trained to predict land model output, given parameter values as input.

Network image: <u>http://cs231n.github.io/neural-networks-1/</u>

Neural Network Basics

Supervised Machine Learning: learn functional relationships given data

Given a set of input **x** and output **y** (training data), use an optimizer to search for a function **f(x)** that fits the data well but also generalizes to new values (validation data).

Schematic from David Hall

Machine Learning Roadmap

- 1. Train: Build and train a series of **neural networks (NNs)** to predict land model output, given parameter values as input.
- 2. Emulate: Use trained NNs as **land model emulators** to make predictions with increased computational efficiency.
- 3. Calibrate: Minimize error in predictions relative to observations; generate optimal parameter values and distributions.
- 4. Test: Use optimal parameter values to investigate changes in model predictive skill.

Neural Networks as Land Model Emulators

Generating the Training Data

K. Dagon

*Offline global land-only simulations forced by atmospheric reanalysis data

NCAR

UCAR

11/12/21

13

0.4

0.3

0.2

83.41%

Spatial patterns from Empirical Orthogonal Function (EOF) analysis

NCAR

UCAR

Neural Networks as Land Model Emulators

Step 1: Train

NCAR

UCAR

Input: land model parameter values

	P1	P2	P3	P4	P5	P6
S1	x1,1	x1,2	x1,3	x1,4	x1,5	x1,6
S2	x2,1	x2,2	x2,3	x2,4	x2,5	x2,6
S3	x3,1	x3,2	x3,3	x3,4	x3,5	x3,6
S100	x100,1	x100,2	x100,3	x100,4	x100,5	x100,6

11/12/21

2-layer feed-forward artificial neural network (ANN) Input Layer Hidden Layer 1 Hidden Layer 2 15.0 n^1 . n^2 ഉ 12.5 Output Layer \mathbf{p}_2 ភ<u>ី</u> 10.0 7.5 n^2 \mathbf{Z}_{1} 5.0 p_3 2.5 n^2 \mathbf{Z}_{2} p_4 Z_2 p₅ n^2

Train to predict spatial variability (first 3 PCs) of gross primary production (GPP). Separate emulator built for first 3 PCs of latent heat flux (LHF).

Assessing Emulator Performance

Step 2: Emulate

NCAR

IICAR

11/12/21

The trained neural network can be applied to test new parameter values and combinations, much more quickly and efficiently than running the climate model.

Increase in Computational Efficiency

Machine Learning Interpretation: Variable/Feature Importance

PC1 Gross Primary Production

Variable/Feature Importance

- Randomly shuffle values of one parameter (preserving others) and test performance of emulator. ٠
- Skill metric is mean squared error between predictions and actual values. ٠
- Larger bar means the parameter is **more important to the predictive skill** of the emulator. ٠

Dagon et al. (2020)

Step 3: Calibrate

- Minimize error in emulator (NN) predictions relative to observations.
- How well do optimized NN predictions match observations (compare blue and red bars)?

Step 4: Test (PCs)

- Test land model (CLM) with optimized ⁻⁰ parameter values; compare default model performance. ⁻⁰
- How well do optimized emulator predictions match model tested with optimal parameters (compare blue and green bars)?
- Does the calibration process improve model biases (compare green bars with red and black bars)?

Dagon et al. (2020)

```
K. Dagon
```

NCAR

UCAR

20

Optimize Emulator Predictions to Reduce Model Biases

Step 4: Test (Global)

 Improvement in global, annual mean biases; regional/seasonal results mixed

Additional Considerations

- Additional sources of uncertainty (e.g., forcing, observations, structural)
- Choice of output variables (GPP and LHF)
- Choice of metrics (annual mean spatial variability as determined by PCA)

11/12/21

NCAR

UCAR

Optimal Parameter Relationships

K. Dagon

Step 5: Infer

NCAR

UCAR

11/12/21

- Generate an additional large parameter sampling (~10⁷ members)
- Subset 1000 members with the smallest predicted normalized error
- Explore parameter relationships and resulting distributions
- Also generating posterior parameter distributions via Markov Chain Monte Carlo (MCMC)

Results in the Context of Climate Predictions

Output: Predicted change in GPP/LHF accounting for parameter uncertainty

Summary

- Parameter choices are a major contributor to uncertainty in land model predictions.
- Neural network emulators can be trained to reproduce land model output with greater computational efficiency.
- Emulator predictions are optimized to minimize error between model and observations.
- Currently extending this work to a large CLM perturbed parameter ensemble (PPE) experiment.

Dagon, K., B.M. Sanderson, R.A. Fisher, D.M. Lawrence (2020), *Adv. Stat. Clim. Meteorol. Oceanogr.*, 6, 223-244, doi:<u>10.5194/ascmo-6-223-2020</u>.

24