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Example of Parameter Uncertainty: Stomatal Conductance
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Image: evolution.berkeley.edu

(1995) model [Eqn (3)] gave the best fit for two datasets,
but the parameter values were not identifiable (i.e. not
significantly different from zero) for five of the eight
datasets. Overall, the unified model performed best,
giving high R2 values for all datasets, and identifiable
parameter values.

We visualize fits of the model to our eight datasets in
Fig. 3. For this figure, relationships were fitted assum-
ing the intercept g0 to be zero; resulting values of g1 are
given in the figure caption. The key point demonstrated
by Fig. 3 is that the slope of the relationship (and
therefore g1) clearly differs among species, and varies
in a consistent manner. As predicted from Eqn (12), g1

increases with growth temperature, with values highest
in tropical savanna species and lowest in Sitka spruce
growing in Scotland. Also, although there is some
confounding between growth temperature and plant
functional type in the datasets presented in Fig. 3, we
can nevertheless identify clear differences among plant
functional types. Values for g1 were lowest in gymno-
sperms and highest in angiosperms, and eucalyptus
have a considerably higher g1 than do pines growing
at similar latitudes (Tables 1 and 2).

Discussion

Stomatal conductance plays a fundamental role in de-
termining vegetation carbon and water balances. In this
paper, we provide a new quantitative framework forT
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Fig. 3 Visualization of the unified stomatal model Eqn (11)

fitted to eight datasets from contrasting forest ecosystems. De-

tails of the ecosystems are given in Table 1. Blue shades show

data from conifers, green shows data from deciduous angios-

perms, and red/purple shades show data from broadleaf ever-

green forests. For this figure, the model and linear regressions

were fitted fixing the intercept to zero. Linear regression slopes

are as follows: Sitka A, 4.2; Sitka B, 4.7; Duke Pine, 6.1; Fagus, 6.8;

Alpine Ash, 7.1; Macchia, 9.8; Savanna, 12.5; Red Gum, 15.1.

Estimated values for g1 are: Sitka A, 3.0; Sitka B, 3.6; Duke Pine,

4.8; Fagus, 5.4; Alpine Ash, 5.9; Macchia, 8.2; Savanna, 11.1; Red

Gum, 13.1.

R E C O N C I L I N G O P T I M A L A N D E M P I R I C A L S T O M AT A L M O D E L S 2139

r 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 2134–2144

Medlyn et al. (2011)
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9.3 Stomatal resistance

CLM5 calculates stomatal conductance using the Medlyn stomatal conductance model (Medlyn et al. 2011). Previous
versions of CLM calculated leaf stomatal resistance is using the Ball-Berry conductance model as described by Collatz
et al. (1991) and implemented in global climate models (Sellers et al. 1996). The Medlyn model calculates stomatal
conductance (i.e., the inverse of resistance) based on net leaf photosynthesis, the vapor pressure deficit, and the CO2
concentration at the leaf surface. Leaf stomatal resistance is:

1

rs
= gs = go + 1.6(1 +

g1p
D
)

An

cs/Patm
(9.1)

where rs is leaf stomatal resistance (s m2 µmol-1), go is the minimum stomatal conductance (µ mol m -2 s-1), An is leaf
net photosynthesis (µmol CO2 m-2 s-1), cs is the CO2 partial pressure at the leaf surface (Pa), Patm is the atmospheric
pressure (Pa), and D is the vapor pressure deficit at the leaf surface (kPa). g1 is a plant functional type dependent
parameter (Table 9.1).

The value for go = 100 µ mol m -2 s-1 for C3 and C4 plants. Photosynthesis is calculated for sunlit (Asun) and shaded
(Asha) leaves to give rsuns and rshas . Additionally, soil water influences stomatal resistance through plant hydraulic
stress, detailed in the Plant Hydraulics chapter.

Resistance is converted from units of s m2 µ mol-1 to s m-1 as: 1 s m-1 = 1⇥ 10
�9Rgas

✓atm

Patm

µ mol-1 m2 s, where Rgas

is the universal gas constant (J K-1 kmol-1) (Table 2.7) and ✓atm is the atmospheric potential temperature (K).

Table 9.1: Plant functional type (PFT) stomatal conductance parameters.
PFT g1
NET Temperate 2.35
NET Boreal 2.35
NDT Boreal 2.35
BET Tropical 4.12
BET temperate 4.12
BDT tropical 4.45
BDT temperate 4.45
BDT boreal 4.45
BES temperate 4.70
BDS temperate 4.70
BDS boreal 4.70
C3 arctic grass 2.22
C3 grass 5.25
C4 grass 1.62
Temperate Corn 1.79
Spring Wheat 5.79
Temperate Soybean 5.79
Cotton 5.79
Rice 5.79
Sugarcane 1.79
Tropical Corn 1.79
Tropical Soybean 5.79

9.4 Photosynthesis

Photosynthesis in C3 plants is based on the model of Farquhar et al. (1980). Photosynthesis in C4 plants is based on
the model of Collatz et al. (1992). Bonan et al. (2011) describe the implementation, modified here. In its simplest

106 Chapter 9. Stomatal Resistance and Photosynthesis

Example of Parameter Uncertainty: Stomatal Conductance

Slope parameter represents marginal 
water cost of carbon gain and is an 
important model parameter.

Medlyn et al. (2011)
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• Biophysical features (e.g., surface energy balance, hydrology, carbon uptake)
• Individual parameter uncertainty ranges determined by literature review, updated observations

• Parameter selection based on a series of sensitivity tests with objective metrics

Name Parameter Description Biophysical Process

medlynslope Slope of stomatal conductance-
photosynthesis relationship

Stomatal conductance and 
photosynthesis

dleaf Characteristic dimension of leaves in the 
direction of wind flow

Leaf boundary layer 
resistance

kmax Plant segment maximum conductance Plant hydraulic stress

fff Decay factor for fractional saturated area Surface runoff

dint Fraction of saturated soil for moisture value 
at which dry surface layer initiates Soil evaporation

baseflow_scalar Scalar multiplier for base flow rate Sub-surface runoff

The Land Model Working Group
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The Game of Climate Model Biases 

Find new study: 
update old, wrong 
parameter value 

Add new structure to 
account for new knowledge 

Two alternative 
algorithms for poorly 
understood process.  

Different but-still-
reasonable value 
gives better answers 

Use value 
calibrated at 
single site. 

Figure from Rosie Fisher

Hand-tuning 
parameter values 
takes a long time 
(many model runs, 
trial and error). Can we use machine 

learning to streamline 
this process?
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PERSPECTIVE RESEARCH

Earth system models48. Overall, we identify five major challenges and 
avenues for the successful adoption of deep learning approaches in 
the geosciences, as follows.

(1) Interpretability
Improving predictive accuracy is important but insufficient. 
Certainly, interpretability and understanding are crucial, including 
visualization of the results for analysis by humans. Interpretability 
has been identified as a potential weakness of deep neural networks, 
and achieving it is a current focus in deep learning49. The field is 
still far from achieving self-explanatory models, and also far from 
causal discovery from observational data50,51. Yet we should note that, 

given their complexity, modern Earth system models are in practice 
often also not easily traceable back to their assumptions, limiting 
their interpretability too.

(2) Physical consistency
Deep learning models can fit observations very well, but predictions 
may be physically inconsistent or implausible, owing to extrapo-
lation or observational biases, for example. Integration of domain 
knowledge and achievement of physical consistency by teaching 
models about the governing physical rules of the Earth system can 
provide very strong theoretical constraints on top of the observa-
tional ones.
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Fig. 2 | Four examples of typical deep learning applications (left 
panels) and the geoscientific problems they can be applied to (right 
panels). a, Object recognition in images links to classification of 
extreme weather patterns using a unified convolutional neural network 
on climate simulation data41. b, Super-resolution applications relate to 
statistical downscaling of climate model output72. c, Video prediction is 

similar to short-term forecasting of Earth system variables. Right image, 
courtesy of Sujan Koirala and Paul Bodesheim, Max Planck Institute for 
Biogeochemistry. d, Language translation links to modelling of dynamic 
time series (ref. 96 and figure 11 in ref. 97). Left image, courtesy of Stephen 
Merity (figure 1 in https://smerity.com/articles/2016/google_nmt_arch.
html).
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Image: https://becominghuman.ai/an-
introduction-to-machine-learning-
33a1b5d3a560 Reichstein et al. (2019)
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Output: land model 
predictions
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Neural network emulator

Network image: http://cs231n.github.io/neural-networks-1/

Input: land model 
parameter values

A machine learning algorithm is trained to predict land model output, given parameter 
values as input.

http://cs231n.github.io/neural-networks-1/
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Supervised Machine Learning: learn functional relationships given data

f(x)

Given a set of input x and output y (training data), use an optimizer to search for a function f(x) that fits 
the data well but also generalizes to new values (validation data).

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

INPUT OUPUT

Schematic from David Hall

Neural Network Basics
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Machine Learning Roadmap

1. Train: Build and train a series of neural networks (NNs) to predict 
land model output, given parameter values as input.

2. Emulate: Use trained NNs as land model emulators to make 
predictions with increased computational efficiency. 

3. Calibrate: Minimize error in predictions relative to observations; 
generate optimal parameter values and distributions.

4. Test: Use optimal parameter values to investigate changes in 
model predictive skill.



Neural Networks as Land Model Emulators

Input: land model 
parameter values

Output: land model perturbed 
parameter ensemble
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Ensemble of model simulations

Step 1: Train

The Land Model Working Group
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Generating the Training Data
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Ensemble of model simulations

Distribution of model 
responses (PC1 of gross 
primary production, or GPP)

Land model* perturbed parameter 
ensemble (PPE) using 100 
parameter combinations generated 
with Latin Hypercube sampling

*Offline global land-only simulations forced by atmospheric reanalysis data

Use principal component analysis (PCA) to predict 
modes of variability of carbon and water fluxes



Spatial patterns from Empirical Orthogonal Function (EOF) analysis
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Dagon et al. (2020)
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Figure 4. Associated spatial patterns of the first three EOFs for GPP (a, b, c) and LHF (d, e, f).

approach to ranking the importance of various model pre-
dictors. Permutation feature importance tests the importance
of different inputs (in this case, land model parameters) in
the predictive skill of the neural network (Gagne et al., 2019;
Molnar, 2019). Feature importance is calculated by randomly
shuffling the values of one parameter input while preserving
others and testing the resulting performance of the emula-
tor. The goal of this method is to determine the impact on
emulator skill when the statistical link between a predictor
input and the output is severed. The skill metric we use for
these tests is the mean squared error between the predictions
and the actual values (Eq. 4). A larger value implies that the
parameter is more important to the predictive skill of the em-
ulator, because when the link between this particular param-
eter and the emulator output is broken, the performance de-
grades and the prediction error increases. We plot the results
of the permutation feature importance tests for PC1 of GPP
and LHF as bar charts in Fig. 7, with larger bars reflecting
greater prediction error and thus implying important infor-
mation is stored in that parameter. We also plot the original
emulator skill (i.e., the mean squared error without any per-
mutations) to better compare the permutation results relative
to the control with no permutations. For parameters with er-
ror very close to the original emulator skill, this implies that
either these parameters are not very important to the predic-
tive skill of the emulator or that the information in these pa-
rameters is present in a different predictor (McGovern et al.,
2019). We find the permutation results are different for the
first modes of GPP and LHF, where the skill of the GPP em-
ulator is dominated by one parameter in particular, kmax,
and none of the other parameters is particularly important.
However, for LHF, there are several important parameters,
including medlynslope, kmax, and dint. These results change

when you look at the higher modes of variability, demonstrat-
ing that there are different parameters important to predicting
different modes of GPP and LHF (Fig. S7).

The second method we use is partial dependence plots,
a technique to visualize the partial dependence of the pre-
dictions on an individual input variable (Friedman, 2001).
Partial dependence plots further the analysis of permutation
feature importance tests by helping to illuminate why a cer-
tain parameter is important (McGovern et al., 2019; Molnar,
2019). These plots show where in the uncertainty range a
given parameter is most important to the skill of the emula-
tor. To visualize these results, we first generate a set of 10
fixed values for each parameter by evenly sampling its un-
certainty range. Taking one parameter and one fixed value at
a time, we then replace all the values for that parameter in the
original LHC-generated parameter sets with the fixed value.
In this way we are removing any skill from that parameter
across the entire ensemble. We then generate predictions us-
ing the trained emulator where we have artificially fixed one
parameter to the same value across all ensemble members.
We repeat for each fixed value and each parameter and cal-
culate separately for GPP and LHF. We then average the pre-
dictions across the emulator output to average out the effects
of the other predictors. We plot the PC1 results for each pa-
rameter in Fig. 8, where each line represents the average pre-
diction across emulator output for the 10 fixed values (shown
as points on the bold lines). In this way we can see how the
predictions vary across the uncertainty ranges for each pa-
rameter. Regions of non-zero slope in the partial dependence
plots indicate where in the parameter range the emulator is
most sensitive. For example, we see that it is the low end of
kmax values that has the greatest impact on the skill of the
emulator for PC1 GPP. For PC1 LHF, the parameter med-

https://doi.org/10.5194/ascmo-6-223-2020 Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, 2020
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Figure 3. Distributions of the first three principal components (PCs) across CLM PPE ensemble members for GPP (a, b, c) and LHF (d, e, f).
The percent variance explained by each mode is shown in each panel in the upper right corner.

servations, comparing the NN predictions with the original
CLM PPE. The normalized error is calculated in the form
of a weighted cost function, which will be discussed further
in Sect. 4.2. We also perform a history matching type ex-
periment (Williamson et al., 2015) in this section to study
optimal regions of the parameter space, and for reference the
error threshold for this experiment is shown as a vertical ma-
genta line in this panel. All panels of Fig. 6 also show the
error resulting from the model with default parameter values
for comparison.

To provide another check on the performance of the emu-
lator, we produce a second PPE using 100 different random
combinations of parameter values for the same set of six pa-
rameters, also generated using Latin hypercube sampling but
with a different LHC than the first PPE. We then use the em-
ulator trained on the first PPE to test the predictive skill using

the information from the second PPE. The predictive skill is
comparable, especially for the first two modes, which pro-
vides more confidence in the trained emulator and helps sup-
port the notion that the network is not overtrained (Fig. S5).
Following Fig. 6, we also plot the RMSE comparisons and
error breakdown for the second CLM PPE relative to obser-
vations (Fig. S6). Again, most of the error comes from the
emulation rather than the EOF approximation, and the pre-
dictive skill is comparable to the first PPE.

3.2 Interpretation of emulator performance and skill

We use multiple interpretation methods to better understand
how the neural network emulator makes its predictions and
what it has learned (McGovern et al., 2019). The first method
we use is called permutation feature importance, which is an

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, 2020 https://doi.org/10.5194/ascmo-6-223-2020



Neural Networks as Land Model Emulators
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Train to predict spatial variability (first 3 PCs) of gross primary production (GPP).
Separate emulator built for first 3 PCs of latent heat flux (LHF).

Step 1: Train
2-layer feed-forward artificial neural 
network (ANN)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

S100 x100,1 x100,2 x100,3 x100,4 x100,5 x100,6

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer

Input: land model 
parameter values

Output: land model perturbed 
parameter ensemble



Assessing Emulator Performance
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Same emulator; different parameter values and resulting 
model output. Predictive skill is comparable.

“Best” emulator trained on original 
parameter values and model output.

Original ensemble Second ensemble

Dagon et al. (2020)



Neural Networks as Land Model Emulators

Output: land model 
PREDICTIONS
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The trained neural network can be applied to test new parameter values and combinations, 
much more quickly and efficiently than running the climate model.

Step 2: Emulate

Trained neural network emulator

The Land Model Working Group
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Increase in Computational Efficiency
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~2 hours per 
simulation

2.6 seconds to 
generate predictions!

Land model perturbed 
parameter ensemble Machine learning emulator
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z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer



Machine Learning Interpretation: Variable/Feature Importance
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Variable/Feature Importance
• Randomly shuffle values of one parameter (preserving others) and test performance of emulator.
• Skill metric is mean squared error between predictions and actual values.
• Larger bar means the parameter is more important to the predictive skill of the emulator.

Dagon et al. (2020)
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Optimize Emulator Predictions to Reduce Model Biases
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Dagon et al. (2020)

Step 3: Calibrate
• Minimize error in emulator (NN) 

predictions relative to observations.
• How well do optimized NN

predictions match observations 
(compare blue and red bars)?

Step 4: Test (PCs)
• Test land model (CLM) with optimized 

parameter values; compare default 
model performance.

• How well do optimized emulator 
predictions match model tested with 
optimal parameters (compare blue 
and green bars)?

• Does the calibration process improve 
model biases (compare green bars 
with red and black bars)?
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Optimize Emulator Predictions to Reduce Model Biases

Step 4: Test (Global)
• Improvement in global, annual 

mean biases; regional/seasonal 
results mixed

Dagon et al. (2020)

• Additional sources of 
uncertainty (e.g., forcing, 
observations, structural)

• Choice of output variables (GPP 
and LHF)

• Choice of metrics (annual 
mean spatial variability as 
determined by PCA)

Additional 
Considerations



Optimal Parameter Relationships
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Step 5: Infer
• Generate an additional large parameter 

sampling (~107 members)

• Subset 1000 members with the smallest 
predicted normalized error

• Explore parameter relationships and 
resulting distributions

• Also generating posterior parameter 
distributions via Markov Chain Monte 
Carlo (MCMC)

Dagon et al. (2020)



Results in the Context of Climate Predictions
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Input: Parameter 
posterior distributions

Output: Predicted change in GPP/LHF 
accounting for parameter uncertainty

DIFFERENT neural network to emulate future 
climate response of land surface model



Summary
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kdagon@ucar.edu
@katiedagon

Thanks!
Questions?

v Parameter choices are a major contributor to uncertainty in land model 
predictions.

v Neural network emulators can be trained to reproduce land model output 
with greater computational efficiency.

v Emulator predictions are optimized to minimize error between model and 
observations.

v Currently extending this work to a large CLM perturbed parameter 
ensemble (PPE) experiment.

Dagon, K., B.M. Sanderson, R.A. 
Fisher, D.M. Lawrence (2020), 
Adv. Stat. Clim. Meteorol. 
Oceanogr., 6, 223-244, 
doi:10.5194/ascmo-6-223-2020.
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