Machine learning to investigate carbonclimate feedbacks

Pierre Gentine – Columbia University

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

Introduction

Biosphere

2 | Multiscale LA.

Introduction

Biosphere

Largely defines continental water cycle response (as it modulates evapotranspiration ET) (Lemordant et al., 2018)

3 | Multiscale LA.

Lemordant, L., Gentine, P., et al. (2018)., *PNAS*. Converse: Green, J.K.., Gentine P., (2019), *Nature*

Addressing those challenges

How can we tackle those issues to better constrain those predictions?

Approach:

Multiscale modeling/observations Combined with physical and statistical (when needed) modeling

> Why **now**? Golden age for Earth Observations (e.g. satellites) + Dramatic increase in computational power (many processes can now be resolved)

4 | Multiscale LA.

Largest terrestrial CO₂ flux: **photosynthesis (GPP)** How can we constrain it to inform global env. changes?

- We now have a proxy for photosynthesis, called **solar-induced fluorescence (SIF)**
- During photosynthesis a plant absorbs energy through its chlorophyll
 - % used for ecosystem gross primary production (GPP)
 - % lost as heat
 - % re-emitted (SIF: byproduct)

Small flux of a small flux: a very small and noisy flux

Example of success with SIF

Better characterization of phenological cycle

NDVI exaggerates seasonal cycle

6 | Multiscale LA.

Jeong et al. (2017). *Remote Sensing of Environment, 190*, 178–187.

SIF is too noisy, not long enough or not sufficient resolution Use machine learning:

Reproduce SIF with MODIS (visible and near infrared channels):

higher accuracy and resolution, longer (2002-now)

Called Contiguous SIF (CSIF)

Gentine, P., & Alemohammad, S. H. (2018). . *Geophysical Research Letters.* Zhang, Y., ... & Gentine, P. (2018), *Biogeosciences*

What is the rational behind this? Let us go back to the basics (light use efficiency a la Monteith) GPP = LUE_{chl}.fPAR_{chl}.PAR Similarly SIF = Yield.fPAR_{chl}.PAR

If Yield, LUE_{chl} are not varying much then APAR_{chl} = fPAR_{chl}.PA<u>R is a good proxy for GPP (and SIF)</u>

8 | Multiscale LA

Zhang, Y et al. (2018). *Geophysical Research Letters*, *45*(8), 3508–3519. https://doi.org/10.1029/2017GL076354

Nile example

Original SIF (GOME-2) - 0.5 degree

Gentine, P., & Alemohammad, S. H. (2018). . *Geophysical Research Letters*. Zhang, Y., ... & Gentine, P. (2018), *Biogeosciences*

Nile example

Contiguous SIF Modis - 0.5 degree

10 | Multiscale LA

Gentine, P., & Alemohammad, S. H. (2018). . *Geophysical Research Letters*. Zhang, Y., ... & Gentine, P. (2018), *Biogeosciences*

Nile example

Contiguous SIF Modis - 0.05 degree

11 | Multiscale LA

Gentine, P., & Alemohammad, S. H. (2018). *Geophysical Research Letters*. Zhang, Y., ... & Gentine, P. (2018), *Biogeosciences*

Use Contiguous SIF to understand sensitivity to warming T ↑ ➡ greener vegetation

Use Contiguous SIF to understand sensitivity to warming T ↑ ➡ greener vegetation

Contiguous SIF: comparison with eddy covariances

Eddy-covariance in situ observations

Contiguous SIF: Start and End of season light limitation Day of photosynthesis gain per increased day of greening

SOS: no light limitation (benefits of being greener)

Greening: beneficial for beginning of season not much benefits for end of season (light limitations)

15 | Multiscale LA

Zhang, Y., Commane R., Gentine P. Light limits end of season northern ecosystem carbon uptake, submitted

COLUMBIA

The Fu Foundation School of Engineering and

Validation: *In situ* eddy-covariance Net Ecosystem Exchange (NEE) NEE = -(Photosynthesis - Respiration) < 0 → Sink

Temperature beneficial for beginning of season not much benefits for end of season (light) but large spatial variations Models do not capture this

16 | Multiscale LA

Application 2. End of season water stress

End of photosynthesis (EOP) date: dependence on pre-season T (Reanalysis) and Soil moisture (SMAP) Correlation (EOP, T) Correlation (EOP, P)

Regions not T limited are water limited Clear separation between them using Support Vector Machine classification Confirmed by eddy covariances (not shown)

17 | Multiscale LA

Zhang, Y., Gentine P., Parazoo N. Zhou S., Piao S., Compound temperature and moisture constraints on end-of-season plant photosynthesis, submitted

Application 2. End of season water stress

Interannual Variability (IAV) still dominates the signal

Trend in CSIF

IAV in CSIF

Trend is still too weak compared to trend in MODIS record Turn to Earth System Models that relatively correctly capture this threshold

18 | Multiscale LA

Zhang, Y., Gentine P. , Parazoo N. Zhou S., Piao S., Compound temperature and moisture constraints on end-of-season plant photosynthesis , submitted

Application 2. End of season water stress

Future prediction of regions with EOP limited by precipitation

Change dominated by warming (demand) not by precipitation (supply, too variable)

Zhang, Y., Gentine P., Parazoo N. Zhou S., Piao S., Compound temperature and moisture constraints on end-of-season plant photosynthesis, submitted

Little change n P sensitivity

19 | Multiscale LA

Conclusions

Machine learning applied to remote sensing as a "filter" for noisy but good data

Two examples of end of season impact on carbon uptake:

1. Light limitation

Machine-learning retrievals of photosynthesis provide **new observational constraints** on GPP response across climates/ecosystems

• Cold regions: Light is the main regulator of end-of-season photosynthesis and carbon uptake temperature sensitivity

2. Dryness change Clear threshold dependent on both T and P Supply vs. demand Demand T change is expected to have more future impact than P

Next steps

Not just correlations, we want to assess causation, predict (e.g. climate change) and interpret
Causation: need to decompose cause and consequence, i.e. directionality and strength

Bidirectional coupling

Case ii: Unidirectional coupling

 $X \rightarrow Y$

Example 1: External forcing of non-coupled variables

 2) Prediction: implies good out-of-sample generalization (beside basic overfitting avoidance)
3) Interpretability (black boxes)

21 | Multiscale LA

THANK YOU

Questions?

