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12% GPP 
increase

for a 35% 
increase 
in CO2
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CO2 Fertilization magnitude?



Keenan et al. (2016)

Nature Communications
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• CO2 markedly increasing the net 
sink, photosynthesis and 
respiration.

• Vegetation greening a distant 
second.

• Warming increased both GPP and 
Respiration.

• No evidence for an increase in 
global water stress.

CO2 Fertilization magnitude?
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CO2 and light use efficiency

𝛽 = ∂(GPP)/∂(Ca),

Smith et al. (2016)

e.g., MOD17:

GPP = u * fAPAR * PAR * f(T) * f(VPD)

Current approaches assume CO2 only effects fAPAR

Big difference between satellite and 
DGVM estimated effect of CO2 on 
photosynthesis

But this only reflects the indirect effect of CO2, 

and the direct effect is much larger.



Incorporating CO2 effects in satellite based estimates
CO2 and light use efficiency

Wang et al. 2017



Satellite GPP estimates predict low sensitivity of global 
GPP to CO2 (capturing mostly the greening effect)
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But DGVMs suggest the sensitivity should be higher
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The sensitivity of RuBisCO to CO2 is relatively large
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Adding RuBisCO sensitivity to remote sensing GPP 
estimates brings them roughly into line with DGVMs
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CO2 and light use efficiency
General convergence in satellite and DGVM sensitivity

DGVMs
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Keenan et al. (2020)
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General convergence in satellite and DGVM sensitivity
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But what are we 
converging to?



CO2 and light use efficiency

There is a lack of reliable observational constraints

2016

2017

COS 
constraint
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Emergent constraints?
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Requirements

n A plausible physical mechanism 
n Theory - led (i.e. a hypothesis-driven approach to testing)
n Avoid fishing expeditions and implicit assumptions about space 

for time extrapolations

“Emergent constraints will therefore remain conditional on the model 
ensembles used to define them and will be subject to systematic biases 
in the model ensemble. Most obviously, if an important process is 
neglected in all models (e.g. nutrient limitations on CO2 fertilization, or 
the impacts of forest fires on the interannual variability of CO2), this has 
the potential to lead to spurious emergent constraints on the real Earth 
System.” Cox et al. 2019



Emergent constraints?

Could the magnitude of the land sink be related to the 
CO2 fertilization effect on photosynthesis?



Sort of…
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But this is the univariate relationship. What about the partial 
relationship between ßGPP and SLAND?



Between-model differences in SLAND predicted via a 
linear model
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Improved confidence in global photosynthesis responses 
to CO2? 
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Constrained range
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But….

n Uncertainties remain:
l GCP Sland uncertainty is ….. 
l Could be systematic biases across models
l What about climate change and climate sensitivities?
l Implicit assumption that each model ßRECO is equally likely 

but represents a realization from a random normal 
distribution

l Ultimately a global constraint provides limited inference for 
regional dynamics, which could compensate each other



Take home messages:

1. Despite uncertainty regarding the magnitude and pathway, 
elevated CO2 is stimulating increased plant C uptake

2. CO2 is also stimulating increased C release from ecosystems

3. The net effect is a large increase in terrestrial C uptake

4. The balance of direct and indirect pathways, and the sensitivity of each 
to CO2 remain poorly characterized.

Implications:

1. We need to understand the relative contribution of each of ∂LUE and ∂WUE 
in order to project when the sink will saturate

2. Previous results using long-term trends in GPP or NPP from remote 
sensing/machine learning may need to be re-evaluated
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…

Thank you!
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