

The historic effect of CO₂ on global photosynthesis

Trevor F. Keenan Asst. Professor, UC Berkeley Faculty Scientist, Lawrence Berkeley National Lab

www.keenangroup.info

Do we expect an effect of CO₂ on photosynthesis?

Do we expect an effect of CO₂ on photosynthesis?

Do we expect an effect of CO₂ on photosynthesis?

R_{grow} 157 ± 5.4 VC R_{ol} 2.45 ± 0.13 257 ± 21 R_{ins} 16.4 ± 3.7 Elevated CO₂ 152 ± 4.1 2.63 ± 0.18 261 ± 37 15.0 ± 2.5 Ambient CO₂ C_{ol} 157 ± 5 NPP_{ins} 27.8 ± 6.3 C_{ins} 0.08 ± 0.01 NPPol 82 ± 0.1 25.5 ± 4.3 192 ± 0.2 151 ± 14 0.18 ± 0.03 GPP₀ 1,754 ± 185 $1,563 \pm 200$ R_{stem} 352 ± 32 *R*_{ua} 186 ± 5.0 GPP_u 552 ± 7.3 NPPother 312 ± 52 191 ± 25 497 ± 28 118 ± 10 107 ± 6 12% GPP NPP_{stem} 39 ± 1.2 C_{ua} 140 ± 32 NPPua Cstem Clit Frass R_{soil} 1,226 ± 141 183 ± 15 79.8 ± 5.9 11.4 ± 2.6 4,709 ± 1,142 43 ± 14.3 4,558 ± 321 156 ± 20 133 ± 20 92.9 ± 17.9 10.5 ± 1.8 $1,097 \pm 86$ increase 19/16 NPPcroot Ccroot 651 ± 143.8 for a 35% 606 ± 60.2 5.2 ± 2.1 NPPiroot Ciroot 57 ± 0.07 - 156 ± 1.2 55 ± 0.06 151 ± 0.9 increase NPPfroot C_{froot} 78 ± 2.6 94 ± 2.7 529 ± 13 77 ± 4.6 511 ± 25 76 ± 5.3 C_{myco} 6.1 ± 0.9 7.4 ± 1.6 Jiang et al., 2020

in CO_2

CO₂

CO₂ Fertilization magnitude?

CO₂ Fertilization magnitude?

- CO₂ markedly increasing the net sink, photosynthesis and respiration.
- Vegetation greening a distant second.
- Warming increased both GPP and Respiration.
- No evidence for an increase in global water stress.

Keenan et al. (2016)

Nature Communications

Big difference between satellite and DGVM estimated effect of CO₂ on photosynthesis

Big difference between satellite and DGVM estimated effect of CO₂ on photosynthesis

Current approaches assume CO2 only effects fAPAR

e.g., MOD17:

GPP = u * fAPAR * PAR * f(T) * f(VPD)

But this <u>only reflects the indirect effect of CO_2 </u>, and the direct effect is much larger.

Incorporating CO₂ effects in satellite based estimates

 Insture plants
 LETTERS

 Doi: 10.1038/s41477-017-0006-8

 Towards a universal model for carbon dioxide uptake by plants

Han Wang^{1,2,3*}, I. Colin Prentice^{1,2,4}, Trevor F. Keenan^{2,5}, Tyler W. Davis^{4,6}, Ian J. Wright², William K. Cornwell⁷, Bradley J. Evans^{2,8} and Changhui Peng^{1,9*}

Wang et al. 2017

Satellite GPP estimates predict low sensitivity of global GPP to CO2 (capturing mostly the greening effect)

Satellite GPP estimates predict low sensitivity of global GPP to CO2 (capturing mostly the greening effect)

But DGVMs suggest the sensitivity should be higher

The sensitivity of RuBisCO to CO2 is relatively large

Adding RuBisCO sensitivity to remote sensing GPP estimates brings them roughly into line with DGVMs

General convergence in satellite and DGVM sensitivity

General convergence in satellite and DGVM sensitivity

converging to?

There is a lack of reliable observational constraints

Emergent constraints?

Requirements

- A plausible physical mechanism
- Theory led (i.e. a hypothesis-driven approach to testing)
- Avoid fishing expeditions and implicit assumptions about space for time extrapolations

"Emergent constraints will **therefore remain conditional on the model ensembles used to define them** and will be subject to systematic biases in the model ensemble. Most obviously, if an important process is neglected in all models (e.g. nutrient limitations on CO2 fertilization, or the impacts of forest fires on the interannual variability of CO2), this has the potential to lead to spurious emergent constraints on the real Earth System." Cox et al. 2019

Emergent constraints?

Could the magnitude of the land sink be related to the CO₂ fertilization effect on photosynthesis?

Sort of...

Sort of...

Sort of...

But this is the univariate relationship. What about the partial relationship between β^{GPP} and S_{LAND} ?

Between-model differences in S_{LAND} predicted via a linear model

 $S_{LAND} \sim \beta^{GPP} + \beta^{RECO} + \beta^{RECO} \cdot \gamma$

Improved confidence in global photosynthesis responses to CO2?

Improved confidence in global photosynthesis responses to CO2?

Uncertainties remain:

- •

Uncertainties remain:

• GCP Sland uncertainty is

 $\begin{array}{c} & & \\$

Uncertainties remain:

• GCP Sland uncertainty is

- GCP Sland uncertainty is
- Could be systematic biases across models

- GCP Sland uncertainty is
- Could be systematic biases across models
- What about climate change and climate sensitivities?

- GCP Sland uncertainty is
- Could be systematic biases across models
- What about climate change and climate sensitivities?
- Implicit assumption that each model
 ß_{RECO} is equally likely but represents a realization from a random normal distribution

- GCP Sland uncertainty is
- Could be systematic biases across models
- What about climate change and climate sensitivities?
- Implicit assumption that each model ß_{RECO} is equally likely but represents a realization from a random normal distribution
- Ultimately a global constraint provides limited inference for regional dynamics, which could compensate each other

Take home messages:

- Despite uncertainty regarding the magnitude and pathway, elevated CO₂ is stimulating increased plant C uptake
- 2. CO₂ is also stimulating increased C release from ecosystems
- 3. The net effect is a large increase in terrestrial C uptake
- 4. The balance of direct and indirect pathways, and the sensitivity of each to CO_2 remain poorly characterized.

Implications:

- 1. We need to understand the relative contribution of each of ∂LUE and ∂WUE in order to project when the sink will saturate
- 2. Previous results using long-term trends in GPP or NPP from remote sensing/machine learning may need to be re-evaluated

Thank you!

. . .

fin

Collaborators:	
Remi Luo	
Martin De Kauwe	
Belinda Medlyn	
Colin Prentice	
Beni Stocker	Wang Han
Nick Smith	Sha Zhou
Cesar Terrer	Yao Zhang

DOE, NASA,

TRENDY modeling teams

