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El Nino conditions modulate the CO2 growth rate

Figure courtesy Ed Dlugokencky, NOAA
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El Nino modulates global surface temperature, with 
warming over the Amazon 
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Atlantic Multidecadal Oscillation affects land climate 
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AMO+ northward ITCZ shift reduces Amazon rainfall

Lewis et al., 2011

Precipitation Anomaly
 (stdev)

Estimated tree mortality 
associated with the 2010 drought 
was between 1.2 and 3.4 Pg C 5
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We ran three experiments with different Atlantic SSTs 
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Figure 1: Weights applied to the HadOIBC SSTs over the equatorial Pacific. The 1870–2014
trend in each month was removed from each grid cell prior to applying the weights. SSTs are
identical to the detrended HadOIBC SSTs inside the ONI region (i.e., w = 1 in the region
bounded by 5◦S–5◦N, 170◦W–120◦W). SSTs bounded by the equatorial Pacific region 30◦S–
30◦N, 140◦E–60◦W, but outside of the ONI region, are a weighted combination HadOIBC
SSTs and the long-term monthly 1950–2014 climatology. That is, for every month m, SSTs
in each grid box x are weighted by fraction wx × xm + (1− wx)×

∑
n

y=1
xm, y)), where n is

the number of years in the 1950–2014 analysis period.
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Figure 1: Weights applied to the HadOIBC SSTs over the equatorial Pacific. The 1870–2014
trend in each month was removed from each grid cell prior to applying the weights. SSTs are
identical to the detrended HadOIBC SSTs inside the ONI region (i.e., w = 1 in the region
bounded by 5◦S–5◦N, 170◦W–120◦W). SSTs bounded by the equatorial Pacific region 30◦S–
30◦N, 140◦E–60◦W, but outside of the ONI region, are a weighted combination HadOIBC
SSTs and the long-term monthly 1950–2014 climatology. That is, for every month m, SSTs
in each grid box x are weighted by fraction wx × xm + (1− wx)×

∑
n

y=1
xm, y)), where n is

the number of years in the 1950–2014 analysis period.
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Figure 1: Weights applied to the HadOIBC SSTs over the equatorial Pacific. The 1870–2014
trend in each month was removed from each grid cell prior to applying the weights. SSTs are
identical to the detrended HadOIBC SSTs inside the ONI region (i.e., w = 1 in the region
bounded by 5◦S–5◦N, 170◦W–120◦W). SSTs bounded by the equatorial Pacific region 30◦S–
30◦N, 140◦E–60◦W, but outside of the ONI region, are a weighted combination HadOIBC
SSTs and the long-term monthly 1950–2014 climatology. That is, for every month m, SSTs
in each grid box x are weighted by fraction wx × xm + (1− wx)×

∑
n

y=1
xm, y)), where n is

the number of years in the 1950–2014 analysis period.
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We ran each AMO experiment for 16 years, replacing SSTs 
in the Pacific ONI region with time-varying conditions to 
represent ENSO variations
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Atlantic BCs Pacific BCs Ensemble 
Members

Longitude

L
a
tit

u
d
e

 120° W   90° W   60° W   30° W    0°     30° E 

 15° S 

  0°   

 15° N 

 30° N 

 45° N 

 60° N 

 75° N 

 

 

A
M

O
 S

S
T

 W
e

ig
h

ts
 (

fr
a

ct
io

n
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Longitude

L
a
tit

u
d
e

 120° W   90° W   60° W   30° W    0°     30° E 

 15° S 

  0°   

 15° N 

 30° N 

 45° N 

 60° N 

 75° N 

 

 

A
M

O
 S

S
T

 W
e

ig
h

ts
 (

fr
a

ct
io

n
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Longitude

L
a
tit

u
d
e

 120° W   90° W   60° W   30° W    0°     30° E 

 15° S 

  0°   

 15° N 

 30° N 

 45° N 

 60° N 

 75° N 

 

 

A
M

O
 S

S
T

 W
e

ig
h

ts
 (

fr
a

ct
io

n
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AMO-

AMO+

AMO
2010 +

90 120 150 180 −150 −120 −90 −60

−40

−30

−20

−10

0

10

20

30

40

50

Longitude

L
a
tit

u
d
e

Tropical Pacific SST Weights

 

 

w
e
ig

h
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Weights applied to the HadOIBC SSTs over the equatorial Pacific. The 1870–2014
trend in each month was removed from each grid cell prior to applying the weights. SSTs are
identical to the detrended HadOIBC SSTs inside the ONI region (i.e., w = 1 in the region
bounded by 5◦S–5◦N, 170◦W–120◦W). SSTs bounded by the equatorial Pacific region 30◦S–
30◦N, 140◦E–60◦W, but outside of the ONI region, are a weighted combination HadOIBC
SSTs and the long-term monthly 1950–2014 climatology. That is, for every month m, SSTs
in each grid box x are weighted by fraction wx × xm + (1− wx)×

∑
n

y=1
xm, y)), where n is

the number of years in the 1950–2014 analysis period.
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Figure 1: Weights applied to the HadOIBC SSTs over the equatorial Pacific. The 1870–2014
trend in each month was removed from each grid cell prior to applying the weights. SSTs are
identical to the detrended HadOIBC SSTs inside the ONI region (i.e., w = 1 in the region
bounded by 5◦S–5◦N, 170◦W–120◦W). SSTs bounded by the equatorial Pacific region 30◦S–
30◦N, 140◦E–60◦W, but outside of the ONI region, are a weighted combination HadOIBC
SSTs and the long-term monthly 1950–2014 climatology. That is, for every month m, SSTs
in each grid box x are weighted by fraction wx × xm + (1− wx)×

∑
n

y=1
xm, y)), where n is

the number of years in the 1950–2014 analysis period.
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Figure 1: Weights applied to the HadOIBC SSTs over the equatorial Pacific. The 1870–2014
trend in each month was removed from each grid cell prior to applying the weights. SSTs are
identical to the detrended HadOIBC SSTs inside the ONI region (i.e., w = 1 in the region
bounded by 5◦S–5◦N, 170◦W–120◦W). SSTs bounded by the equatorial Pacific region 30◦S–
30◦N, 140◦E–60◦W, but outside of the ONI region, are a weighted combination HadOIBC
SSTs and the long-term monthly 1950–2014 climatology. That is, for every month m, SSTs
in each grid box x are weighted by fraction wx × xm + (1− wx)×

∑
n

y=1
xm, y)), where n is

the number of years in the 1950–2014 analysis period.
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The Amazon rainforest has high GPP, and therefore has a 
large lever arm on carbon-climate interactions
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The annual cycles in Temperature, Precipitation, and GPP 
covary in the Amazon 
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Temperature generally increases in El Nino or AMO+ 
conditions, with large internal variability
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Precipitation decreases with peak El Nino conditions
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Both AMO+ and El Nino reduce GPP across an annual 
cycle, with largest difference at onset of wet season
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Can the anomaly due to AMO+/El Nino conditions be 
represented as the sum of an anomaly due to El Nino 

and an anomaly due to AMO+ ?

17



12N 

18S 

12S 

 6S 

   0  

 6N 

  80W   70W   60W   50W   40W -30

-20

-10

0

10

20

30

∆
 G

PP
 [g

 C
 m

-2
 m

on
th

-1
]

We consider six climate states, combining AMO-/+/2010+ and 
neutral/El Nino conditions

We bin grid cells into 4x5 deg supercells (20 total)

For each supercell, we have 4 x Nens x N(neutral/El Nino) 
data points per month

We generate synthetic data to emulate the influence of 
Atlantic and Pacific SST on Amazon climate 
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We consider six climate states, combining AMO-/+/2010+ and 
neutral/El Nino conditions

We bin grid cells into 4x5 deg supercells (20 total)

For each supercell, we have 4 x Nens x N(neutral/El Nino) 
data points per month

We generate synthetic data to emulate the influence of 
Atlantic and Pacific SST on Amazon climate 
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We use relationships among the interannual variability 
for each supercell to calculate a spatial covariance 

matrix for each month 

January

Southwest supercell is correlated with 
other supercells in the southwest 

quadrant of the domain

Southeast supercell is correlated 
with most of the domain
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We use relationships among the interannual variability 
for each supercell to calculate a spatial covariance 

matrix for each month 

July

Southeast supercell is uncorrelated 
with most of the domain
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We sample from monthly covariance matrices 
10,000 times to emulate the six climate states

AMO- AMO+ AMO (2010) +

El Nino
Neutral
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Synthetic data show 
similar mean and 
variance patterns to 
CESM simulations

Synthetic Data 

AMO- AMO(2010)+
CESM Simulations 
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Synthetic GPP data show a systematic positive bias when 
we assume that the influences of El Nino and AMO+ 
conditions are additive

Baseline = GPP-/neutral

ΔGPP = GPP+/El Nino — Baseline

ΔGPP = GPP-/El Nino—Baseline 
              + GPP+/neutral—Baseline
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This nonlinearity is found primarily in western half of 
the domain 

Baseline = GPP-/neutral

ΔGPP = GPP+/El Nino — Baseline

ΔGPP = GPP-/El Nino—Baseline 
              + GPP+/neutral—Baseline 25
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Temperature is higher at start of hydrologic year, but 
similar the rest of the year 

Baseline = GPP—/neutral

ΔTS = TS+/El Nino — Baseline

ΔTS = TS-/El Nino—Baseline 
              + TS+/neutral—Baseline 26
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Leaf Area Index is substantially reduced at start of 
hydrologic year in the western Amazon due to higher 
temperature stress

Baseline = GPP—/neutral

ΔTS = TS+/El Nino — Baseline

ΔTS = TS-/El Nino—Baseline 
              + TS+/neutral—Baseline 27
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Persistent LAI for broadleaf evergreen in western Amazon
Broadleaf Evergreen
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High autocorrelation for leaf area index and GPP drives 
nonlinear response to El Nino and AMO+ conditions 
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LAI for evergreen broadleaf in western half of domain 
shows strong memory effect
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Together, AMO+ and El Nino conditions reduce NEP by 
300 Tg over an annual cycle compared to AMO-/Neutral 
conditions

This value is 20% 
higher than if 
Atlantic and 
Pacific boundary 
conditions had 
independent, 
additive impacts
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Atlantic and Pacific climate conditions drive variability in 
Amazon carbon cycling, with reduced gross and net uptake 
when oscillations are in their positive mode

The reduction in carbon uptake is larger than expected if 
climate oscillations have independent influence on land 
climate

The nonlinear reduction in carbon cycling can be traced to 
memory provided by LAI in broadleaf evergreen forests

These results are based on simulations, but could 
potentially be assessed in observations from satellite
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