The roles of vegetation in mediating changes in precipitation and runoff in the tropics

Gabriel Kooperman University of Georgia

Forrest Hoffman (ORNL), Charles Koven (LBNL), Keith Lindsay (NCAR), Yang Chen (UCI), Megan Fowler (UCI), Baird Langenbrunner (UCI), Michael Pritchard (UCI), James Randerson (UCI), Abigail Swann (UW)

September 20, 2018

How do plant physiological responses to rising CO₂ contribute to long-term changes in the hydrological cycle?

Precipitation

Drought

Flooding

Heat/Fire

Tropical forests are critical for carbon cycling and biodiversity, but future rainfall changes over forests have seemed uncertain

Annual Mean Precipitation Change

Despite this uncertainty, all modern climate models project a growing zonally asymmetric rainfall pattern across the tropics

Tropical Forest Regions

Tropical Precipitation Asymmetry Index $I_{TPA} = (P_{Asia} + P_{Africa})/2 - P_{America}$

 \square

Present-day/ Pre-industrial

Precipitation Asymmetry

Kooperman et al., 2018, Nature CC

Future

Zonally asymmetric rainfall pattern is driven by both radiative greenhouse and plant physiological responses to increasing CO₂

Annual Mean Precipitation Change

Precipitation Asymmetry

Kooperman et al., **2018, Nature CC** 5

Idealized CO₂-only forcing simulations separate the radiativegreenhouse and plant-physiology impacts of rising CO₂

Land CO₂ Physiological Forcing 1140 - Pre-Industrial - Physiology - Radiation - Full 285 0 50 190 240 Simulation Time (Year)

1785

Community Earth System Model

Pre-Industrial 4xCO₂ Pre-Industrial 4xCO₂

Idealized CO₂-only forcing simulations separate the radiativegreenhouse and plant-physiology impacts of rising CO₂

1785

Zonally asymmetric rainfall pattern is driven by both radiative greenhouse and plant physiological responses to increasing CO₂

Annual Mean Precipitation Change

Precipitation Asymmetry

Kooperman et al., 2018, Nature CC 8

Plant physiological responses alone are a dominant component of the overall precipitation change over dense tropical forests

Annual Mean Precipitation Change

Full: Radiation + Physiology

Physiology

How do plant physiological responses to rising CO₂ contribute to this zonally asymmetric pattern of rainfall change?

Amazon

Indonesia

Precipitation ↑ **Precipitation** ↓

A new experiment with CESM tests if the pattern is driven by tropics-wide (e.g. Walker Circulation) or regional mechanisms

Tropics Wide Mechanism

Regional Mechanisms

Global

Asia

Annual Mean Precipitation Change

CO₂ Concentration

America

1000 800 600 400 200 0

Higher CO₂ reduces stomatal conductance and transpiration, modifying surface heat fluxes and near-surface air conditions

Annual Mean Evapotranspiration Change

How do plant physiological responses to rising CO₂ contribute to this zonally asymmetric pattern of rainfall change?

Amazon

Indonesia

Precipitation ↑ Precipitation ↓

Evapotranspiration \downarrow **Condensation Level** \uparrow

Surface flux changes drive convectively-coupled and island-like circulations over the Amazon and Indonesia, respectively

Annual Mean Surface Specific Humidity Change

Annual Mean Tropical (5°S - 5°N) Specific Humidity Change

Locally and non-locally driven moisture convergences changes lead to less rainfall over the Amazon and more over Indonesia

- similar magnitudes

 Precipitation reduction over the Amazon has local and non-local (Africa) influences

 Evapotranspiration reduction from local forcing over the Amazon and Indonesia have

 Indonesia has a larger rise in moisture convergence than evapotranspiration reduction

 Circulation changes from the Africa forcing lower moisture convergence to the Amazon

How do plant physiological responses to rising CO₂ contribute to this zonally asymmetric pattern of rainfall change?

Amazon

Indonesia

Precipitation

Evapotranspiration Condensation Level † **Convective Heating †** Circulation Anomaly ←

Moisture Convergence Moisture Convergence **J**

Export of Moist Static Energy ←

Langenbrunner et al., submitted 2018

Simply the presence, proximity (~3000 km), and circulations of Africa reduce moisture flow and rainfall over the Amazon

Amazon

Precipitation

South American Rainfall With Africa – Without Africa

Moisture Convergence

Cook et al. (2004)

How do plant physiological responses to rising CO₂ contribute to long-term changes in the hydrological cycle?

Precipitation

Drought

Drought assessments based on precipitation and temperature neglect the role of vegetation and project widespread increases

Palmer Drought Index

Radiation

Physiology

Full

Evapotranspiration

-2.4 -1.6 -0.8

Normalized P – E

Swann et al., 2016, PNAS

19

How do plant physiological responses to rising CO₂ contribute to long-term changes in the hydrological cycle?

Precipitation

Drought

Flooding

Global-scale river flooding exposure is expected to significantly increase due both climate change and population growth

100-Year Flood Return Period Change

- With no population growth, up to 77 million more people could be at risk
- The number of people and property at risk is significantly higher when population growth is included

- Many recent global-scale flood assessments based on Earth system model projections
- Downscaling global runoff with CaMa-Flood model indicates a significant increase in river flood frequency and intensity

Millions of People Exposed

Global assessments based on Earth system model projections requires downscaling of either precipitation or runoff

Global Flood Risk Assessment

Flood Impacts

Number of People Exposed Assets Exposed Total Damage

Modified version of schematic from Winsemius et al. [2013]

Both methods begin with global modeling results, but changes in runoff are driven by additional land-surface processes

Precipitation Intensity Change

• Precipitation intensity increase due to enhanced uplift of low-level moisture

Soil Moisture Change

• Regional mean precipitation increase in some locations ("wet-get-wetter")

Both methods begin with global modeling results, but changes in runoff are driven by additional land-surface processes

Precipitation Intensity Change

Greenhouse **Higher Gas Warming Precipitation** Intensity Higher CO₂ in Less **Atmosphere** Interception More Throughflow Less More Infiltration Surface Runoff

• Precipitation intensity increase due to enhanced uplift of low-level moisture

Soil Moisture Change

 Reduced stomatal conductance lowers transpiration and increases soil moisture

Rainfall intensification is primarily driven by radiative effects, but runoff intensity changes are also influenced by physiology

99th Percentile Precipitation 99th Percentile Runoff

• Daily rain intensity increases across the tropics in response to increasing CO₂

• Daily runoff also increases intensity significantly due to increasing CO₂

• Rainfall intensity is primarily driven by radiative effects

 Runoff change has contributions from both radiation and physiology effects

> Kooperman et al., in revision 2018

The plant-physiological response to raising CO₂ contributes as much as radiative effects to 99th percentile runoff changes

- Daily precipitation rate intensity increases across all percentile rates
- Precipitation is primarily driven by radiative effects for all percentiles
- Physiology has a small contribution

 \square

Runoff Percentile Change

- Daily runoff intensity changes are largest from physiology up to 99th percentile
- Physiology adds ¹/₃ to 99.9th percentile
- Full simulation is a linear combination of physiology and radiation simulations

Plant-physiological impacts of raising CO₂ are lower stomatal conductance and evaporation, and higher soil moisture

Mean Evapotranspiration

Top 10cm Soil Moisture

 Plant-physiology reduces stomatal conductance and transpiration

 Radiation effects raise evaporative demand and total evaporation

 Physiology effect is larger in tropics while radiation effect is larger for high-latitudes

 Physiology effect results in higher soil moisture over most tropical land

Plant-physiological and radiative effects both contribute to mean rainfall changes, but runoff is dominated by physiology

Mean Precipitation Change

Mean Runoff Change

• Transpiration and soil moisture also feedback on mean precipitation

 Mean precipitation changes are from both radiation and physiology effects in the tropics

 Significant mean runoff increases across the tropics

 Runoff increases primarily due to physiology effects

Daily runoff amount increases for all precipitation rates when physiological responses to rising CO₂ are included

Precipitation Amount Distribution

- Accumulated precipitation amount from the highest rates increases while amount from lowest rates decreases in all cases
- **Radiative effects have the largest impact** \bullet on intensity with a strong rightward shift

- Radiative effects on runoff have a similar right shift for runoff intensity changes
- But the influence of physiology increases runoff from all precipitation rates (same rain rates produce more extreme runoff)

Runoff Conditional Amount Distribution

Downscaling pre-industrial CESM runoff with the CaMa-Flood model captures streamflow though major river systems

99th Percentile Pre-Industrial Discharge

- The Catchment-based Macroscale Floodplain Model is used to downscale **CESM** runoff for global flood statistics
- The model represents continental-scale river flow and floodplain dynamics at $\frac{1}{4}^{\circ}$ (e.g., river discharge and inundation) in major river basins of the world

 \square

• The CaMa-Flood Model captures the order of magnitude of river discharge reasonably well under pre-industrial conditions relative to Global Runoff Data Centre station data

Annual Max Discharge

Changes in downscaled river discharge recreate the patterns of runoff change and contributions from physiological processes

Discharge Percentiles

99th Percentile Discharge

• When runoff is aggregated downstream, physiological effects are the dominant component of discharge changes across the tropics

- The increases in 99th percentile river discharge across tropical land reflect the runoff pattern
- Regional impacts
 from physiology
 and radiation are
 also similar
- This implies the climate change signal in studies that downscale runoff offline is mostly due to the ESM results

Idealized CO₂-only forcing captures RCP8.5 multi-model mean pattern of change from, with significant increases in the topics

100-Year Flood Return Period Change

Radiation

Return Period (years)

CMIP5 RCP8.5 Multi-Model

Physiology

• Downscaling CESM runoff from the Full simulation captures the same flood return pattern as the **CMIP5 Multi-Model Mean**

• 1000-member bootstrap test shows a statistical significant flood increase across parts of the topics at 95% confidence level

 Comparing Full, Radiation, and Physiology simulations, identifies which mechanism has the dominant control on future flood frequency in different regions

Regions where runoff changes are driven by both radiation and physiology are likely to have the most flood related impacts

Dominant Component of Full Change

• Radiation: large rainfall changes

 $\boxed{\bigcap}$

- Physiology: large soil moisture changes
- **Both:** large rain and soil moisture changes

Regional Average Percent Changes

	PHYS - CTRL		RAD -	CTRL	FULL - CTRL		
	India	Horn of Africa	India	Horn of Africa	India	Horn of Africa	
Rain	1.9	-5.9	19.0	25.9	21.0	24.0	
Soil Moist.	1.5	0.1	1.7	6.0	2.5	8.0	
Runoff	21.7	29.8	34.7	46.0	56.5	79.2	

	PHYS - CTRL			RAD - CTRL			FULL - CTRL		
	West Amazon	Sahel	SE Aust.	West Amazon	Sahel	SE Aust.	West Amazon	Sahel	SE Aust.
Rain	12.3	12.5	5.5	-1.2	-1.2	12.0	16.5	21.1	12.3
Soil Moist.	10.1	9.2	12.4	-4.6	-4.7	-2.8	7.1	9.2	6.2
Runoff	27.5	19.7	57.2	-2.8	9.5	2.1	49.1	34.4	64.3

	PHYS - CTRL		RAD -	CTRL	FULL - CTRL		
	SE U.S.	SE Asia	SE U.S.	SE Asia	SE U.S.	SE Asia	
Rain	-2.6	7.8	18.8	25.2	10.7	26.6	
Soil Moist.	9.3	4.8	4.1	1.9	9.1	4.6	
Runoff	104.9	75.9	92.8	79.7	132.7	107.5	

How do plant physiological responses to rising CO₂ contribute to long-term changes in the hydrological cycle?

Precipitation

Drought

Flooding

Heat/Fire

Conclusions

Rainfall and Drought

- Nearly all CMIP5 models predict a strengthening zonal precipitation asymmetry across tropical forests
- Physiology is a primary driver of increases in rain over Asian forests and decreases over the Amazon
- CESM simulations demonstrate that regional dynamic responses mostly drive of this pattern of change
- Results suggest that the Amazon will be more prone to drought and fire risk than other tropical forests
- Asian forests will receive more rain, which may increase flooding events

Runoff and Flooding

- Plant-physiology effects contribute as much as radiative effects to 99th percentile and one-third to 99.9th percentile runoff changes
- Plant-physiology influences runoff through both direct effects on soil moisture as well as feedbacks on mean precipitation changes
- Regions where an intensification of rainfall and plant-physiology both to contribute runoff changes are at most risk for future flooding
- Many of these regions are in lower income and highly populated areas, leading to disproportionate impacts

