The roles of vegetation in mediating changes in precipitation and runoff in the tropics

Gabriel Kooperman University of Georgia

Forrest Hoffman (ORNL), Charles Koven (LBNL), Keith Lindsay (NCAR), Yang Chen (UCI), Megan Fowler (UCI), Baird Langenbrunner (UCI), Michael Pritchard (UCI), James Randerson (UCI), Abigail Swann (UW)

September 20, 2018

1

How do plant physiological responses to rising CO₂ contribute **to long-term changes in the hydrological cycle?**

Precipitation Drought Flooding Heat/Fire

Annual Mean Precipitation Change

Tropical forests are critical for carbon cycling and biodiversity, but future rainfall changes over forests have seemed uncertain

Tropical Precipitation Asymmetry Index $I_{TPA} = (P_{Asia} + P_{Africa})/2 - P_{America}$

 $\overline{\widehat{\mathrm{m}}}$

Present-day/ Pre-industrial

Tropical Forest Regions

Kooperman *et al.,* **2018, Nature CC**

Future

Despite this uncertainty, all modern climate models project a growing zonally asymmetric rainfall pattern across the tropics

Precipitation Asymmetry

Zonally asymmetric rainfall pattern is driven by both radiative greenhouse and plant physiological responses to increasing CO2

Kooperman *et al.,* **2018, Nature CC**

Annual Mean Precipitation Change Precipitation Asymmetry

Idealized CO₂-only forcing simulations separate the radiativegreenhouse and plant-physiology impacts of rising CO2

Community Earth System Model

 $\boxed{\prod_{1785}}$

Idealized CO₂-only forcing simulations separate the radiativegreenhouse and plant-physiology impacts of rising CO2

 $\boxed{\prod_{1785}}$

Zonally asymmetric rainfall pattern is driven by both radiative greenhouse and plant physiological responses to increasing CO2

Kooperman *et al.,* **2018, Nature CC** 8

Annual Mean Precipitation Change Precipitation Asymmetry

Plant physiological responses alone are a dominant component of the overall precipitation change over dense tropical forests

Annual Mean Precipitation Change

Full: Radiation + Physiology Physiology

How do plant physiological responses to rising CO₂ contribute **to this zonally asymmetric pattern of rainfall change?**

Amazon Indonesia

Precipitation ↑ Precipitation ↓

Annual Mean Precipitation Change

A new experiment with CESM tests if the pattern is driven by tropics-wide (e.g. Walker Circulation) or regional mechanisms

Tropics Wide Mechanism Regional Mechanisms CO2 Concentration

Global America

$\begin{bmatrix} 1000 \\ 800 \\ 600 \\ 400 \\ 200 \\ 0 \end{bmatrix}$

Higher CO₂ reduces stomatal conductance and transpiration, **modifying surface heat fluxes and near-surface air conditions**

Annual Mean Evapotranspiration Change

Amazon Indonesia

Condensation Level ↑ Precipitation ↑ Evapotranspiration ↓

How do plant physiological responses to rising CO₂ contribute **to this zonally asymmetric pattern of rainfall change?**

Precipitation ↓

Annual Mean Tropical (5˚S - 5˚N) Specific Humidity Change

Annual Mean Surface Specific Humidity Change

Surface flux changes drive convectively-coupled and island-like circulations over the Amazon and Indonesia, respectively

• **Precipitation reduction over the Amazon has local and non-local (Africa) influences**

• **Evapotranspiration reduction from local forcing over the Amazon and Indonesia have**

-
- **similar magnitudes**
-
-

• **Indonesia has a larger rise in moisture convergence than evapotranspiration reduction**

• **Circulation changes from the Africa forcing lower moisture convergence to the Amazon**

Locally and non-locally driven moisture convergences changes lead to less rainfall over the Amazon and more over Indonesia

Amazon Indonesia

Condensation Level ↑ Precipitation ↑ Evapotranspiration ↓

Convective Heating ↑ Circulation Anomaly ←

Precipitation ↓

How do plant physiological responses to rising CO₂ contribute **to this zonally asymmetric pattern of rainfall change?**

Moisture Convergence ↑ Moisture Convergence ↓

Langenbrunner *et al.***, submitted 2018**

Export of Moist Static Energy ←

Amazon

South American Rainfall With Africa – Without Africa

Precipitation Moisture Convergence

Cook *et al.* **(2004)**

Simply the presence, proximity (~3000 km), and circulations of Africa reduce moisture flow and rainfall over the Amazon

How do plant physiological responses to rising CO₂ contribute **to long-term changes in the hydrological cycle?**

Precipitation Drought

Drought assessments based on precipitation and temperature neglect the role of vegetation and project widespread increases

Swann *et al.,* **2016, PNAS**

Radiation

Physiology

Full

 $-24 -1.6 -0.8$

 \sim 0.8

Palmer Drought Index Evapotranspiration Normalized P – E

19

How do plant physiological responses to rising CO₂ contribute **to long-term changes in the hydrological cycle?**

Precipitation Drought

Flooding

Global-scale river flooding exposure is expected to significantly increase due both climate change and population growth

- **Many recent global-scale flood assessments based on Earth system model projections**
- **Downscaling global runoff with CaMa-Flood model indicates a significant increase in river flood frequency and intensity**

- **With no population growth, up to 77 million more people could be at risk**
- **The number of people and property at risk is significantly higher when population growth is included**

Millions of People Exposed

100-Year Flood Return Period Change

Global assessments based on Earth system model projections requires downscaling of either precipitation or runoff

Number of People Exposed Assets Exposed Total Damage

Modified version of schematic from *Winsemius et al.* **[2013]**

Flood Impacts

Global Flood Risk Assessment

Both methods begin with global modeling results, but changes in runoff are driven by additional land-surface processes

• **Precipitation intensity increase due to enhanced uplift of low-level moisture**

Infiltration Higher Soil Moisture and Water Table

-
- **Regional mean precipitation increase in some locations ("wet-get-wetter")**

Soil Moisture Change

• **Reduced stomatal conductance lowers**

Both methods begin with global modeling results, but changes in runoff are driven by additional land-surface processes

transpiration and increases soil moisture enhanced uplift of low-level moisture ²⁴• **Precipitation intensity increase due to**

Precipitation Intensity Change

Less Infiltration More Surface Runoff More Throughflow Less Interception Greenhouse Gas Warming Higher CO₂ in **Atmosphere Higher Precipitation Intensity**

• **Daily runoff also increases intensity significantly due to** increasing CO₂

• **Rainfall intensity is primarily driven by radiative effects**

• **Runoff change has contributions from both radiation and physiology effects**

Rainfall intensification is primarily driven by radiative effects, but runoff intensity changes are also influenced by physiology

- -
	-
	-
	-
-
-
-
-
-
-
-
-

• **Daily rain intensity increases across the tropics in response** to increasing **CO**₂

in revision 2018

The plant-physiological response to raising CO2 contributes as much as radiative effects to 99th percentile runoff changes

- **Daily precipitation rate intensity increases across all percentile rates**
- **Precipitation is primarily driven by radiative effects for all percentiles**
- **Physiology has a small contribution**

 $\boxed{\text{m}}$

- **Daily runoff intensity changes are largest from physiology up to 99th percentile**
- **Physiology adds** ⅓ **to 99.9th percentile**
- **Full simulation is a linear combination of physiology and radiation simulations**

Plant-physiological impacts of raising CO₂ are lower stomatal conductance and evaporation, and higher soil moisture

Mean Evapotranspiration

Top 10cm Soil Moisture

• **Plant-physiology reduces stomatal conductance and transpiration**

• **Radiation effects raise evaporative demand and total evaporation**

• **Physiology effect is larger in tropics while radiation effect is larger for high-latitudes**

• **Physiology effect results in higher soil moisture over most tropical land**

• **Transpiration and soil moisture also feedback on mean precipitation**

• **Mean precipitation changes are from both radiation and physiology effects in the tropics**

• **Significant mean runoff increases across the tropics**

• **Runoff increases primarily due to physiology effects**

Plant-physiological and radiative effects both contribute to mean rainfall changes, but runoff is dominated by physiology

Mean Precipitation Change Mean Runoff Change

Daily runoff amount increases for all precipitation rates when physiological responses to rising CO2 are included

- **Accumulated precipitation amount from the highest rates increases while amount from lowest rates decreases in all cases**
- **Radiative effects have the largest impact on intensity with a strong rightward shift**

 $\boxed{\Box}$

- **Radiative effects on runoff have a similar right shift for runoff intensity changes**
- **But the influence of physiology increases runoff from all precipitation rates (same rain rates produce more extreme runoff)**

Precipitation Amount Distribution Runoff Conditional Amount Distribution

Annual Max Discharge

Downscaling pre-industrial CESM runoff with the CaMa-Flood model captures streamflow though major river systems

99th Percentile Pre-Industrial Discharge

• **The CaMa-Flood Model captures the order of magnitude of river discharge reasonably well under pre-industrial conditions relative to Global Runoff Data Centre station data**

- **The Catchment-based Macroscale Floodplain Model is used to downscale CESM runoff for global flood statistics**
- **The model represents continental-scale river flow and floodplain dynamics at ¼˚ (e.g., river discharge and inundation) in major river basins of the world**

 $\boxed{\text{m}}$

Changes in downscaled river discharge recreate the patterns of runoff change and contributions from physiological processes

- **The increases in 99th percentile river discharge across tropical land reflect the runoff pattern**
- **Regional impacts from physiology and radiation are also similar**
- **This implies the climate change signal in studies that downscale runoff offline is mostly due to the ESM results**

• **When runoff is aggregated**

downstream, physiological

effects are the dominant

component of discharge

changes across the tropics

99th Percentile Discharge

 -500

500

1000

 \ln

Discharge Percentiles

Idealized CO₂-only forcing captures RCP8.5 multi-model mean pattern of change from, with significant increases in the topics

• **Downscaling CESM runoff from the Full simulation captures the same flood return pattern as the CMIP5 Multi-Model Mean**

• **1000-member bootstrap test shows a statistical significant flood increase across parts of the topics at 95% confidence level**

• **Comparing Full, Radiation, and Physiology simulations, identifies which mechanism has the dominant control on future flood frequency**

- -
-
- **in different regions**

100-Year Flood Return Period Change

Return Period (years)

- **Full CMIP5 RCP8.5 Multi-Model**
	- *Hirabayashi et al.* **[2013]**
		-

Dominant Component of Full Change

Regions where runoff changes are driven by both radiation and physiology are likely to have the most flood related impacts

• **Radiation: large rainfall changes**

 $\overline{\mathbb{D}}$

- **Physiology: large soil moisture changes**
- **Both: large rain and soil moisture changes**

Regional Average Percent Changes

How do plant physiological responses to rising CO₂ contribute **to long-term changes in the hydrological cycle?**

Precipitation Drought Flooding Heat/Fire

Conclusions

Rainfall and Drought Runoff and Flooding

- **Plant-physiology effects contribute as much as radiative effects to 99th percentile and one-third to 99.9th percentile runoff changes**
- **Plant-physiology influences runoff through both direct effects on soil moisture as well as feedbacks on mean precipitation changes**
- **Regions where an intensification of rainfall and plant-physiology both to contribute runoff changes are at most risk for future flooding**
- **Many of these regions are in lower income and highly populated areas, leading to disproportionate impacts**

- **Nearly all CMIP5 models predict a strengthening zonal precipitation asymmetry across tropical forests**
- **Physiology is a primary driver of increases in rain over Asian forests and decreases over the Amazon**
- **CESM simulations demonstrate that regional dynamic responses mostly drive of this pattern of change**
- **Results suggest that the Amazon will be more prone to drought and fire risk than other tropical forests**
- **Asian forests will receive more rain, which may increase flooding events**