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Problem:	ESM	soil	carbon	models	
don’t	seem	to	have	a	lot	of	predic0ve	
power,	even	for	the	mean	state.	We’d	
like	to	benchmark	to	constrain	models	

Todd-Brown	et	al.,	2013	



Current	ILAMB	soil	benchmarks	



Some	issues	with	current	approaches	

•  Stock-based,	so	errors	in	plant	inputs	propagate	into	
the	soil	and	show	up	as	errors	in	soil.	

•  Integral-	or	Spa0ally-based,	so	errors	in	climate	show	
up	as	errors	in	soil.	

•  Large	dynamic	range	of	soil	stocks	means	that	errors	in	
high	la0tude	are	weighted	more	than	errors	in	tropics.	

•  Doesn’t	dis0nguish	between	what	the	models	are	
trying	but	failing	to	predict	(mineral	soils)	from	things	
they	aren’t	even	trying	to	predict	(peatlands).	

•  Would	like	to	construct	some	sort	of	rela0onship	
benchmark	to	mi0gate	some	of	these	issues.	



How	to	construct	a	simple	model	of	soil	carbon	
that	works	across	the	world’s	climates?	

Simple	reservoir	theory:	Treat	soil	system	as	a	
reservoir,	in	which	losses	are	propor0onal	to	stocks	

Inputs	
Stock	

Outputs	

Turnover	Time	



Ini0al	Soil	C	
stock	

uncertainty	in	
ESMs	

dominated	by	
turnover	0me	
uncertainty.	

NPP	 Soil	C	Turnover	Times	

Koven	et	al.,	Biogeosciences,	2015	



However,	transient	uncertainty	in	ESM	carbon	
stocks	mainly	driven	by	produc0vity	

Strong	stabilizing	feedback		
from	enhanced	produc0vity		
under	elevated	CO2?	

Weak	destabilizing	
feedback	from	
enhanced	
decomposi0on	
under	warming?	

Koven	et	al.,	Biogeosciences,	2015	

Large	uncertainty	
due	to	ini0al	
turnover	0mes	



Temperature	Sensi0vity	of	respira0on:	
the	Q10	approxima0on	

Mahecha	et	al.,	Science,	2010	



Calculate	turnover	0me	as	ra0o	of	carbon	stocks	to	fluxes.	
Assumes	quasi-equilibrium	state.	

Soil	C	Turnover	Time	(y)	



Plot	turnover	as	func0on	of	mean	annual	air	
temperature	



Color	by	precipita0on	to	see	where	(low)	moisture	
effects	are	dominant	

Precipita0on	(mm/yr)	



Limit	condi0on	of	produc0vity	becoming	small	and	turnover	
becoming	large	along	both	aridity	and	temperature	gradients,	

but	high	soil	carbon	only	in	cold	climates	

Soil	Carbon	to	1	(kg	C)	

Aridity	gradients		
towards	deserts	

Temperature	gradients		
towards	permafrost	



Iden0fy	peatlands	to	see	where	(high)	moisture	effects	
are	dominant	



Iden0fy	(low)-moisture	control	by	P-
PET	threshold	



Isolate	temperature	from	moisture	effects	by	removing	
gridcells	that	are	either	too	wet	or	too	dry	



Take	deriva0ve	of	best-fit	curve	to	es0mate	a	
“climatological	Q10”	

Note	that	this	is	just	for	carbon	to	1m	depth,	so	different	from	the	
larger	permafrost	carbon	issue,	which	is	dominated	by	deep	carbon.	



How	do	CMIP5	ESMs	compare?	

Precipita0on	(mm/yr)	



A	simple	scaling		theory	for	why	temperature		
sensi0vity		is	high	in	cold	climates	

Using	daily	soil	
temperatures	and	mean	
annual	air	temperatures	
from	a	land	surface	model:	
	
	
	
	
	
	Method	1:		Q10	=	1.5,	using	
10cm	soil	temperatures	



A	simple	scaling		theory	for	why	temperature		
sensi0vity		is	high	in	cold	climates	

Using	daily	soil	
temperatures	and	mean	
annual	air	temperatures	
from	a	land	surface	model:	
	
	
	
	
	
	Method	2:		Arrhenius	
equa0on	following	Lloyd	
and	Taylor	(1994),	using	
10cm	soil	temperatures	



A	simple	scaling		theory	for	why	temperature		
sensi0vity		is	high	in	cold	climates	

Using	daily	soil	
temperatures	and	mean	
annual	air	temperatures	
from	a	land	surface	model:	
	
	
	
	
	
	Method	3:		Q10	=	1.5	when	
thawed,	k	=	0	when	frozen,	
using	10cm	soil	temperatures	



A	simple	scaling		theory	for	why	temperature		
sensi0vity		is	high	in	cold	climates	

Using	daily	soil	
temperatures	and	mean	
annual	air	temperatures	
from	a	land	surface	model:	
	
	
	
	
	
	Method	4:		Q10	=	1.5	when	
thawed,	k	=	0	when	frozen,	
using	soil	temperatures	at	
each	level,	and	then	calculate	
mean	k	across	0-1m	interval	
Implica0on:	Properly	represen0ng	the	scaling	of	freeze/thaw	in	both	volume	and	0me	

is	essen0al	to	understanding	temperature	controls	on	soil	carbon	cycling	



How	does	CLM4.5	compare	to	observa0onal	
benchmark?	

•  CLM4.5	can	approximate	the	change	in	slope	due	to	ver0cally-resolved	soil	carbon	
dynamics	

•  Comparison	against	benchmark	supports	parameter	choice	that	allows	
decomposi0on	to	proceed	freely	in	deep	soils	

Precipita0on	(mm/yr)	



Development	of	an	actual	Benchmark	

•  Approach	1:	Filter	data	as	observa0ons	(P-PET	
threshold),	fit	quadra0c	to	log(tau),	and	
compare	regression	coefficients	

•  Approach	2:	Filter	data,	bin	by	temperature	
interval	and	take	mean	across	bins,	calculate	
RMSE	difference	between	that	and	obs	



Benchmarking	results	



Example	of	Quadra0c	regressions	on	models	



Soil	moisture	control	in	CLM	
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CLM	equa0on:	

CLM	value	 Original	
reference	

ψmax	 -10	MPa	 -0.35	MPa	

ψmin	 satura0on	
	

Field	capacity	
(-0.005	Mpa)	

Which	is	from	this	paper,	but…	



Developments	along	the	path:	CLM4	->	CLM4.5	->	CLM5	

Lawrence	et	al	in	prep	



What’s	going	on	with	the	low	
climatological	Q10	in	warm	climates?	

Some	possible	explana0ons:	
•  Increased	clay	content	of	tropical	soils	
•  Microbial	kine0c	limita0ons,	either	at	the	
community	level	(Wang	et	al.,	2016)	or	at	the	
individual	level	(Tang	and	Riley,	2015)	

•  More	complex	interplay	of	temperature	and	
moisture	effects	than	our	analysis	allows	

•  …	



MIMICS	and	the	tropical	low-sensi0vity	regime	



Incorpora0on	
of	metric	in	soil	
Biogeochemical	

testbed	

Wieder	et	al.,	2017	

CASA-CNP	

MIMICS	

CORPSE	



“Global	Loam”	Experiment	

Wieder	et	al.,	2017	



Conclusions	
•  We’ve	constructed	a	global,	mul0variate	rela0onship	that	is	useful	for	

constraining	some	of	the	long-term	climate	sensi0vity	of	ESM	soil	models.	
•  Result	is	that	long-term	temperature	sensi0vity	as	measured	by	

“climatological	Q10”	is	itself	sensi0ve	to	temperature,	and	higher	in	cold	
than	warm	climates	

•  A	simple	explana0on	for	high	cold-climate	sensi0vity	is		a	purely	physical	
scaling	argument	rela0ng	soil	freeze-thaw	dynamics	to	air	temperature	

•  CMIP5	models	don’t	capture	qualita0ve	behavior,	which	can	be	captured	
via	quan0ta0ve	benchmarks,	and	this	systema0c	bias	likely	implies	that	
they	are	underes0ma0ng	transient	soil	C	sensi0vity	to	warming	as	well	

•  Low	warm-climate	sensi0vity	remains	to	be	explained;	mul0ple	possible	
reasons,	which	would	have	different	implica0ons	for	transient	behavior	

•  Benchmark	useful	as	a	constraint	in	both	iden0fying	structural	
requirements	as	well	as	some	parameter	calibra0on	in	CLM	


