A Unified Diagnostic System for Uncertainty Analysis of Land Carbon Cycle Models

Yiqi Luo

Center for Ecosystem Science and Society, Northern Arizona University, AZ, USA

Unified Diagnostic System Or 1-3-5 scheme

- One (1) formulae unifies all land C cycle models
- One 3-D space to evaluate all model outputs
- Five (5) Traceable components to pinpoint uncertainty sources

Luo et al. AGU talk 2017

Background

Uncertainty in land carbon cycle modeling

Friedlingstein et al. 2006

- Models behave so differently;
- Uncertainty has been documented in almost all model intercomparison projects (MIPs);
- Uncertainty becomes larger instead of smaller as we incorporate more processes into models
- We become more confused with uncertainty as we invest more time to address this issue.

Modeling conundrum

Increasing detail in process representation in models, and the simulations they produce, hinders our understanding of holistic system behavior

Conundrum in climate modeling

High degree of complexity and sophistication of model implementations hinders understanding of general patterns of atmospheric circulation and climate dynamics.

Matrix approach

Matrix representation of land carbon cycle provides a general framework for the qualitative understanding of models without compromising detail in process representation

Sierra et al. under review

Unified Diagnostic System Or 1-3-5 scheme

- One (1) formulae unifies all land C cycle models
- One 3-D space to evaluate all model outputs
- Five (5) Traceable components to pinpoint uncertainty sources

Global carbon cycle

Box-arrow model to track pools and fluxes

Three-pool model

litterfall

Decomposition

Mineralization

Stabilization

Complex model

Plant pools (306)18 per vegetation type17 vegetation types

Soil pools (70) 7 per soil layer 10 layers

376 carbon pools378 nitrogen pools

Matrix equation of CLM4.5

$$\frac{dX(t)}{dt} = B(t)I(t) - A\xi(t)KX(t) - V(t)X(t)$$

$$X(t) = (X_1(t), X_2(t), X_3(t), ..., X_{70}(t))^T$$

$$= \begin{pmatrix}
A11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A33 & 0 & 0 & 0 & 0 \\
A11 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & 0 & A44 & 0 & 0 & 0 \\
A11 & 0 & 0 & A44 & A65 & A66 & 0 \\
0 & 0 & 0 & 0 & A75 & A76 & A77
\end{pmatrix}$$

$$A_{31} = diag(-f_{31}, -f_{31}, -f_{31},$$

General equation for C and N model

$$\begin{cases} \frac{d}{dt}X(t) = A_C\xi(t)K_CX(t) + u(N,t)B\\ \frac{d}{dt}N(t) = A_N\xi(t)K_NN(t) + k_uF\Pi \end{cases}$$

 $X(t=0)=X_0$ $N(t=0)=N_0$

CLM vegetation C&N: phenology, fire etc.

LR_S: live coarse root storage

Matrix equation of vegetation C&N dynamics

Matrix equation of soil C&N dynamics

Diagnostic variables related to C storage Capacity (X_c) and C storage potential (X_p)

$$X_C = -(A\xi K)^{-1}BI$$
$$X_P = X_C - X$$

Luo et al. 2017

 ξ : Environmental scalar

- A: Carbon transfer coefficient
- *K*: Turnover rate
- B: Partitioning coefficients for influx
- *I*: Influx
- X: state variable of C storage

Add 100 variables: 36 Vegetation C output variables, 36 Vegetation N output variables (18 vegetation pools), 14 Soil C variables and 14 Soil N variables (7 soil pools) for both capacity and potential.

5. Hierarchical models

Vertical profile

Developing

General representation

<i>x</i> -dependence	<i>t</i> -dependence		
	Autonomous	Non-autonomous	
Linear	$oldsymbol{u} + oldsymbol{B} \cdot oldsymbol{x}(t)$	$\boldsymbol{u}(t) + \mathbf{B}(t) \cdot \boldsymbol{x}(t)$	
Nonlinear	$oldsymbol{u}(oldsymbol{x}) + oldsymbol{B}(oldsymbol{x}) \cdot oldsymbol{x}(t)$	$\boldsymbol{u}(\boldsymbol{x},t) + \mathbf{B}(\boldsymbol{x},t) \cdot \boldsymbol{x}(t)$	

Sierra et al. under review

General equation for biogeochemical models

Matrix models

- 1. CLM 3.5
- 2. CLM4.0
- 3. CLM4.5
- 4. CLM5.0
- 5. CABLE
- 6. LPJ-GUESS
- 7. ORCHIDEE
- 8. BEPS
- 9. TECO

In progress

- 1. JULES
- 2. LM3V-N

10 more models to participate in the summer training course

10 nonlinear microbial models by Carlos Sierra

Unified Diagnostic System Or 1-3-5 scheme

- One (1) formulae unifies all land C cycle models
- One 3-D space to evaluate all model outputs
- Five (5) Traceable components to pinpoint uncertainty sources

Major issues

$$\frac{dX(t)}{dt} = AX(t)CX(t) + BU(t)$$
$$X(t = 0) = X_0$$

If the carbon cycle mathematically is an extremely simple system,

• How can it account for complex phenomena observed in the real world?

Investigative Workshop in 2012

Jim Cushing: Nonautonomous system

Nonautonomous system

A dynamical system with its input and parameters being time dependent

$$\begin{cases} \frac{dX(t)}{dt} = AX(t)CX(t) + BU(t) \\ X(t=0) = X_0 \end{cases}$$

U(t) is input, which is time dependent

Parameters $\chi(t)$ and B(t) are time dependent

Working group

Carbon cycle dynamics

$$\frac{dX(t)}{dt} = BI(t) - A\xi(t)KX(t)$$

$$X(t) = (A\xi(t)K)^{-1}Bu(t) - (A\xi(t)K)^{-1}X'(t)$$

$$X(t) = t_E(t)NPP(t) - X_p(t)$$
Transient dynamics
Residence Production Potential 3D
time

 $X_{ss}(t) = \tau_E(t)NPP(t)$ Steady state

Luo et al. 2017, Biogeosciences

Predictability

(e.g., tipping point)

Given one type of forcing, we anticipate a highly predictable pattern of response

Luo et al. 2015 GCB

Dynamic disequilibrium of the terrestrial carbon cycle under global change

Yiqi Luo and Ensheng Weng

Department of Botany and Microbiology, University of Oklahoma, OK 73019, USA

TRENDS in Ecology & Evolution

Case	Equilibrium	Disequilibrium	Methods of quantification	Note
Ecosystem over 1 day and 1 year	Annual averages of C influx and efflux are balanced unless the ecosystem is at disequilibrium owing to disturbance or global change	Diel and seasonal imbalances of C influx and efflux are driven by cyclic environmental change	Diel and seasonal imbalances of C influx and efflux can generally be simulated successfully by models without changes in parameterization	No need to apply the dynamic disequilibrium concept for understanding diel and seasonal dynamics of the C cycle
Global change	An original equilibrium can be defined at a reference condition (e.g. pre-industrial [CO ₂]) and a new equilibrium at the given set of changed conditions	Dynamic disequilibrium occurs as the C cycle shifts from the original to a new equilibrium. Global change factors gradually alter over time, leading to continuous dynamic disequilibrium	Direct effects of global change on the C cycle can be modeled via environmental scalars to estimate dynamic disequilibrium explicitly	Dynamic disequilibrium diminishes with acclimation and adaptation, but amplifies with changes in ecosystem structure to new states of the C cycle
Ecosystem within one disturbance- recovery episode	C cycle is at equilibrium if the ecosystem fully recovers after a disturbance. The equilibrium C storage equals the product of C influx and residence time	C cycle is at dynamic disequilibrium and an ecosystem sequesters or releases C before the ecosystem fully recovers to the equilibrium level	C sequestration or release under dynamic disequilibrium can be fully quantified by three sets of parameters related to C influx, residence time and initial pool size	Data assimilation and other techniques are needed to estimate the three sets of parameters simultaneously
Regions with multiple disturbances over time	C cycle is at dynamic equilibrium in a region when the disturbance regime does not shift (i.e. is stationary). The realizable C storage under a stationary regime is smaller than that at the equilibrium level (Figure 2d–f, main text)	C cycle is at dynamic disequilibrium and the region sequesters or releases C when the disturbance regime in the region shifts (i.e. is non- stationary)	Disturbance regime shifts can be characterized by a joint probability distribution of disturbance frequency and severity over space and time. The joint distribution can be combined with C cycle models to estimate regional C sink dynamics over time	Single disturbance events offer no information on regional C sequestration. Probability distribution can be used for prognostic C modeling by generating stochastic forcings of disturbance
Multiple states	C cycle can be at equilibrium at the original and alternative states	Dynamic disequilibrium occurs as an ecosystem changes from the original to alternative states	State changes usually result from changed ecosystem structures to require changes in structures and parameters of C models	State changes can be the major mechanisms for instability of future terrestrial C storage

Table 1. Applications of the dynamic disequilibrium concept to assess properties of C sink dynamics in five cases

Carbon cycle dynamics

$$\frac{dX(t)}{dt} = BI(t) - A\xi(t)KX(t)$$

Luo et al. 2017, Biogeosciences

CMIP5

TRENDY

Unified Diagnostic System Or 1-3-5 scheme

- One (1) formulae unifies all land C cycle models
- One 3-D space to evaluate all model outputs
- Five (5) Traceable components to pinpoint uncertainty sources

Carbon cycle dynamics

Luo et al. 2017, Biogeosciences

Transient Traceability Framework (TTF)

FACE Data-Model Synthesis

Ecosystem responses to climate change B54C-08

Harvard Forest

Jiang et al. 2018, JAMES

1-3-5 scheme for uncertainty analysis

- One (1) formulae unifies all land C cycle models
- One 3-D space (input, residence time, and sink potential) to evaluate all model outputs
- Five (5) Traceable components to pinpoint uncertainty sources down to individual line of code or values of parameters

Other benefits

- Most likely make your life easier
 - Simplicity in coding
 - Cleaner and more efficient code
 - Faster for spin-up
- Enabling new research
 - Sensitivity analysis (e.g., Sobol)
 - Pool-based data assimilation
 - Diagnostic variables (e.g., residence times)
 - Traceability of uncertainty sources
- Understanding your model results much easier