Development, Evaluation and Application of New Soil Moisture Products

Jiafu Mao¹, Yaoping Wang^{1,2}, Forrest M. Hoffman³, Céline J. W. Bonfils⁴, Hervé Douville⁵, Mingzhou Jin^{1,6}, Peter E. Thornton², Daniel M. Ricciuto², Xiaoying Shi², Haishan Chen⁷, Stan D. Wullschleger², Shilong Piao⁸, and Yongjiu Dai⁹

¹ Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA; ² Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, USA; ³ Computational Sciences and Engineering Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA; ⁴ Program for Climate Model Diagnosis and Intercomparison, Atmospheric, Earth, & Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA; ⁵ Centre National de Recherches Météorologiques, CNRM/GMGEC/AMACS, Université de Toulouse, Météo-France, CNRS, Toulouse Cedex 01, France; ⁶ Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, USA; ⁷ Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China; ⁸ Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China; ⁹ School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

How to cite:

- Wang, Y., J. Mao*, et al. (2021a) Development of observation-based global multi-layer soil moisture products for 1970 to 2016, Earth System Science Data, 13, 4385-4405, httpts://doi.org/10.5194/essd-13-4385-2021.
- Wang, Y., J. Mao*, et al. (2021b) Quantification of human contribution to soil moisture-based terrestrial aridity, Under review.

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgements: This research was mainly supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation Science Focus Area funded through the Regional and Global Model Analysis activity in the Earth and Environmental Systems Sciences Division of the Biological and Environmental Research office in the DOE Office of Science.

Importance of Soil Moisture (SM)

Rationale for Creating Merged Soil Moisture Products

Data source	Pros	Cons
In situ observations	More accurate than remote sensing or model products	Represent only small spatial scale and too sparse
Remote sensing observations	Global, relatively high- resolution coverage	Have gaps, only represent the topsoil
Land surface models, reanalysis, and Earth system models	Gap-free, represent multiple soil layers	Subject to modeling biases

Merging multiple-source datasets would overcome the limitations of individual datasets, resulting in long-term, global, gap-free, multi-layer SM products for research purposes.

Existing Data Merging Efforts for Soil Moisture

Data Descriptor Open Access Published: 27 May 2021

A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002–2019)

Panpan Yao, Hui Lu ⊠, Jiancheng Shi, Tianjie Zhao, Kun Yang, Michael H. Cosh, Daniel J. Short Gianotti & Dara Entekhabi

Scientific Data8, Article number: 143 (2021)Cite this article1123Accesses2AltmetricMetrics

ELSEVIER

Remote Sensing of Environment Volume 203, 15 December 2017, Pages 185-215

ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions

Wouter Dorigo ^a A ^B, Wolfgang Wagner ^a ^B, Clement Albergel ^b ^B, Franziska Albrecht ^c ^B, Gianpaolo Balsamo ^d ^B, Luca Brocca ^e ^B, Daniel Chung ^a ^B, Martin Ertl ^f ^B, Matthias Forkel ^a ^B, Alexander Gruber ^a ^B, Eva Haas ^c ^B, Paul D. Hamer ^g ^B, Martin Hirschi ^h ^B, Jaakko Ikonen ⁱ ^B, Richard de Jeu ^j ^B, Richard Kidd ^k ^B, William Lahoz ^g ^B, Yi Y. Liu ¹ ... Pascal Lecomte ^g

Validation of a New Root-Zone Soil Moisture Product: Soil MERGE

TED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 9, SEPTEMBER 2019

3351

Kenneth J. Tobin¹⁰, Wade T. Crow¹⁰, Member, IEEE, Jianzhi Dong, and Marvin E. Bennett

Data Descriptor Open Access Published: 12 July 2021

Global soil moisture data derived through machine learning trained with *in-situ* measurements

Sungmin O. 🖂 & Rene Orth

Scientific Data 8, Article number: 170 (2021) | Cite this article

Show more V National Laboratory

Merging Framework

Gridded data \ Method	Unweighted averaging	<u>Optimal Linear Combination</u> (using in situ soil moisture observations)	<u>Emergent Constraint</u> (using gridded observed meteorological data)						
<u>O</u> ffline land surface model simulations, <u>R</u> eanalysis, and <u>S</u> atellite	Mean ORS	olc ors	EC ORS						
Earth system models (CMIP5, CMIP6)		—	EC CMIP5, EC CMIP6, EC CMIP5+6						
ORS and Earth system models			EC ALL						

7 hybrid SM products based on 3 merging methods:

- ✓ Coverage: global, 1970–2016;
- ✓ Spatial resolution: 0.5°;
- ✓ *Temporal resolution: monthly;*
- ✓ Vertical layers: 0-10cm, 10-30cm, 30-50cm, 50-100cm;

Evaluation Datasets

Dataset	Туре	Period	Depth (cm)	Resolution	Coverage	Reference		
SMOS L3 RE04 MIR_CLF3MA, MIR_CLF3MD	Satellite	2010–2020	Surface (0–5)	~25 km	Global with missing values	(Al Bitar et al., 2017)		
SMOS L4 SCIE MIR_CLM4RD	Reanalysis	2010–2020	0–100	~25 km	Global with missing values	(Al Bitar et al., 2013)		
GLEAM v3.3a	Reanalysis	1980–2018	0–100	0.25°	Global	(Martens et al., 2017)		
SMERGE v2	Reanalysis	1979–2019	0–40	0.125°	Contiguous United States	(Tobin et al., 2017)		
SoMo.ml	Machine learning upscaled from in situ observations	2000–2019	0–10, 10–30, 30– 50	0.25°	Global	(O and Orth, 2020)		

Performance of the Merged SM Products (Site Eval.)

7 **CAK RID** National Labora

Performance of the Merged SM Products (Global Eval.)

*

*

*

*

*

-

-

*

0-100cm

8

Performance of the Merged SM Products (Frequency Eval.)

Power

Performance of the Merged SM Products (Drought Eval.)

CAK RIDGE

National Laboratory

10

Performance of the Merged SM Products (Sensitivity Eval.)

11

Dominant driving factors

Yaoping Wang, Jiafu Mao^{*}, Forrest M. Hoffman, Céline J. W. Bonfils, Hervé Douville, Mingzhou Jin, Peter E. Thornton, Daniel M. Ricciuto, Xiaoying Shi, Haishan Chen, Stan D. Wullschleger, Shilong Piao, and Yongjiu Dai, *Quantification of Human Contribution to Soil Moisture-based terrestrial aridity*, Under review, 2021.

of the year contain detectable signal, indicating the presence of seasonal variability; \checkmark The signals are attributable to anthropogenic forcings (ALL/ANT), especially greenhouse gases (GHG); \checkmark Provide a comprehensive basis for drought risk reduction

strategies and

activities;

		~	175	2.5	200	2.4.	5	6P \$	SM		1 Mir	Nº N	2	N.	, Com	of x	SV	1.1	2.2	,0, N	Se WIBO
	-6	S	S.	3MI	SC ,	CIUN		0,	Ę,	4.SN	ری ز	4°	SM2	CM.	08 7 . 9	Q 0 0	Ę,	ESN.	SN	20 C	^{tl} C/z
	\$C2	C'o	° CV	×°	.101	. & .	41.	4.	40	\$	Co	°. ℃	17.	<i>&</i> ²	41.	41	40	S.	No	No	
Piomass	_																				
Blumass		-																			
Burneu Area	_																				
Carbon Dioxide																					
Gross Primary Productivity	_																				
Leat Area Index	_													_							
Global Net Ecosystem Carbon Balance																					
Net Ecosystem Exchange	_																				
Ecosystem Respiration	_																				
Soil Carbon																					
Hydrology Cycle																					
Evapotranspiration	_																				
Evaporative Fraction																					
Latent Heat																					
Runoff																					
Sensible Heat																					
Terrestrial Water Storage Anomaly																					
Permafrost																					
Radiation and Energy Cycle																					\backslash
Albedo																					\backslash
Surface Upward SW Radiation																					
Surface Net SW Radiation																					
Surface Upward LW Radiation																					```
Surface Net LW Radiation																					
Surface Net Radiation																					
Forcings																					
Surface Air Temperature																					
Diurnal Max Temperature																					
Diurnal Min Temperature																					
Diurnal Temperature Range																					
Precipitation																					
Surface Relative Humidity																					
Surface Downward SW Radiation																					
Surface Downward LW Radiation																					
Relationships																					
BurnedArea/GFED4S																					
GrossPrimaryProductivity/GBAF																					
LeafAreaIndex/AVHRR																					
LeafAreaIndex/MODIS																					
Evapotranspiration/GLEAM																					
Evapotranspiration/MODIS																					

a strate the strate

Application II: ILAMB Hydrology Benchmarking

- ILAMB evaluates model results by comparing with global-, regional-, and site-scale data
- The current set of variables and datasets (blue text) are shown below

Missing Data or Error ILAMB 2.5 (0705c73e07947221604bfdda0004e1999dbcb4ac)

CMIP6 models (Hoffman et al., in prep)

Application II: <u>ILAMB SM Benchmarking</u>

14

Summary of the Merged SM Products

- Achieved the goal of creating long-term, gap-free, multi-layer SM products (<u>https://doi.org/10.6084/m9.figshare.13661312.v1</u>);
- The merged SM products showed reasonable performances, and were broadly within the estimates reported by previous SM evaluations;
- Three "offline-based" SM products (mean ORS, OLC ORS, and EC ORS) were generally shown to perform better than those "online-based" ESM products;
- Opening doors to new applications;

Next Steps

Further Application and Development

- Analyze the impacts of long-term soil moisture changes on above- and belowground C dynamics;
- Provide the initial and boundary conditions for atmospheric models;
- Assemble more in situ SM datasets and implement other advanced fusion algorithms;

> New Ecohydrology Working Group

- ✓ Leverage existing AmeriFlux/SOC-RUBISCO;
- Understand and benchmark the global SM dynamics using multi-source and multi-scale datasets;
- ✓ Improve existing SM databases and benchmarking methods;
- Find innovative ways to use benchmarking results to improve model parameterization, predictions, and projections.

Thanks for Your Attention! Questions and Comments?

