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Rise in CO2 in the atmosphere is SMALLER 
than emissions would suggest 

Perspective Science 2012      | Ballentyne et al. 2012 
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Models all generally agree 

11 Land Surface models from different Earth System Models 
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11 Land Surface models from different Earth System Models 
*Pun courtesy of Dr Sarah J Ivory … pers comm 
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Friend et al. PNAS 2014;111:3280-3285 
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Net carbon balance is a SMALL 
difference between LARGE fluxes 

GPP 

Ra Rh 

Net Ecosystem Productivity NEP 

(Net Accumulation in the Ecosystem) 

Net Ecosystem Exchange 

(Net Accumulation in the atmosphere) 

Autotrophic respiration 

Heterotrophic respiration 

Total photosynthesis 



Measuring fluxes 

Photos: Ray Leuning 



Global Distribution of Eddy Flux Towers - FLUXNET 



Global Distribution of Eddy Flux Towers - FLUXNET 

How do we extract knowledge from all 
these sites to give us information about 
how carbon cycling respond to climate ? 



 

• Systematic combination of data and models  

• Taking into account the uncertainties in both 

• Process model provides an analytical framework 

• If done well: 

• Modeled state becomes more consistent with 
observations (and hopefully with the truth!) 

• Makes forecasts more accurate (as initial 
conditions are improved)  

What is data assimilation? 



Separation of NEE into 
GPP and Re 

(Sacks et al 2006, 2007) 

(Moore et al 2008) 

Flux data alone does not 
constrain below ground 

processes well 

Responses of NEE to 
precipitation change 

Contrast between Day (psn) and Night 
(no psn) allows separation 

Seasonal co-ordination of GPP and ET (obs) 
allows a reasonable response to be 

extracted 

Above and below ground processes 
confounded in tower based 

measurements 

(Zobitz et al 2008) 

NEE does not constrain long 
term processes 

Biomass, Soil Resp, LAI, litterfall can be 
used to constrain different parameters in 

the model 

Richardson et al. 2010 

Learning from flux data at ecosystem scales 



Making Better Spaghetti? 

Fluxes don’t help much with 
longer time scales & model 
Structure problems 

Diagram from:  
Dennis Baldocchi 



Better Spaghetti? 

Fluxes don’t help much 
with longer time scales 

Diagram from:  
Dennis Baldocchi 

Eddy Flux 



CLM-DART an Earth System Model DA system 

DOE Regional and Global Climate Modeling DE-SC0016011 



1. Multi-instance capability in CESM 

2. CLM to DART coupling 

3. CLM-DART setup scripts 

4. Add observation processors 

5. Test at site level with synthetic experiments  

6. Test at site level with real observations 

7. Test globally with synthetic experiments 

8. Test globally with real observations 

9. Iterate 4-7 as new observations are added 
 

CLM-DART Development Strategy 

DOE Regional and Global Climate Modeling DE-SC0016011 



• Assimilate combinations of different 
observations 

• MODIS Leaf Area Index Product 

• Plot biomass estimates 

• Flux tower Net Ecosystem Exchange 

• Having carried this out at a number of site, we 
consistently find assimilating LAI tends to 
reduce fit with NEE 

• This suggests am issue with model structure 

Site Level Data Assimilation Lessons 

DOE Regional and Global Climate Modeling DE-SC0016011 



YELLOW: PHENOCAM NETWORK 

DOTS: AMERIFLUX SITES 
 
BLACK: KNOWN BIOMETRIC DATA 
PINK: TREE RING SAMPLING 

TESTING LAND SURFACE 
MODELS AT THREE DIFFERENT 
TIMESCALES USING THE 
AMERIFLUX NETWORK 

DOE Regional and Global Climate Modeling DE-SC0016011 
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For effective data assimilation 

The model and the data must have a common means of 
communication  
- either the model predicts the data type being assimilated 
- or we have a way to translating the data or model so that 
they can be compared statistically 

 
The model should contain the processes that govern the data 
 the assimilation could fail or  

 the resulting combination could be spurious  

 
The uncertainty in the dataset should be well characterized  
 Otherwise either the model or the data will be given too much weight 
 

DOE Regional and Global Climate Modeling DE-SC0016011 



Phenology Problems: CLM fAPAR mismatch in spring with 
MODIS fAPAR 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. NACP 2015 



CLM vs CLMphenocam CLM vs MODIS CLMphenocam vs MODIS 

DOE Regional and Global Climate Modeling DE-SC0016011 Chen et al. 2016 Global Change Biology 

Modification of CLM phenology module: Addition of 
chilling process improves fit with MODIS data in North 
America 

New Phenology Module parameterizing based on Phenocam data 



DOE Regional and Global Climate Modeling DE-SC0016011 Chen et al. 2016 Global Change Biology 

Improved CLM phenology module translates to earlier 
springs in RCP8.5 projections 



Tree rings - Linking the carbon cycle and climate 
Decadal-centennial constraints for Earth System Models 

Babst F, Alexander MR, Szejner P, Bouriaud O, Klesse S, Roden J, Ciais P, Poulter B, Frank D, Moore DJP, Trouet V (2014) 

A tree-ring perspective on the terrestrial carbon cycle Oecologia 176 (2), 307-322 OECO-D-14-00512   

DOE Regional and Global Climate Modeling DE-SC0016011 

1. growth phenology  
2. forest productivity 
3. CO2 fertilization 
4. forest disturbances 
5. vegetation model 

evaluation 

Information content of 
tree increment cores 
can provide a 
constraint on Land 
Surface Models with 
respect to: 

Increment cores can augment short term metrics like 
eddy covariance towers at seasonal, inter-annual and 
decadal-centennial timescales  



Observed forest sensitivity to climate implies large changes in 21st century North 
American forest growth 

(1) climate change negatively impacted forest growth rates in the interior west and 

positively impacted forest growth along the western,southeastern and 

northeastern coasts;  

(2) shifting climate sensitivities offset positive effects of warming on high-latitude 

forests, leaving no evidence for continued ‘boreal greening’;  

(3) It took a 72% WUE enhancement to compensate for continentally averaged 
growth declines under RCP 8.5. 

Charney et al 2016 Ecology Letters DOE Regional and Global Climate Modeling DE-SC0016011 



Tree Rings and Terrestrial Biosphere Models 

Rollinson et al 2017 Glob Change Bio 



Tree Rings and Terrestrial Biosphere Models 

Rollinson et al 2017 Glob Change Bio 

One of these things is 
not like the others 



Reconstructing stand level NPP dynamics 
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Time since forest establishment 
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Real forests are complex 



Sampling Tree Rings Ecologically 

Site: Valles Caldera 

DOE Regional and Global Climate Modeling DE-SC0016011 
Alexander et al 2017a in revision TREES S&F 

“We collected tree cores from 13 different sites from 

across the US.  We traveled over 10K miles that 

summer to collect cores from over 1500 trees.”  

 

3000+ cores were mounted, sanded, cross dated, 

measured and statistically analysed. 

Ross Alexander, PhD   



We can reconstruct the record of ring width for trees through time 

DOE Regional and Global Climate Modeling DE-SC0016011 
Alexander et al 2017 PhD Thesis 

CLM does not understand ring width index 



Site: Valles Caldera 

DOE Regional and Global Climate Modeling DE-SC0016011 

Ring width is translated to biomass increment using  
allometric relationships 

Alexander et al 2017a in revision TREES S&F 



Site: Valles Caldera 

DOE Regional and Global Climate Modeling DE-SC0016011 

Total woody biomass is calculated for the period 1980 – now 
With uncertainty from increment, allometry, stand structure & 
mortality 

Alexander et al 2017a in revision TREES S&F 



Site: Valles Caldera 

Dots: Ameriflux Biometric data 
Line & Shading: Tree Ring Biomass estimate 

DOE Regional and Global Climate Modeling DE-SC0016011 

Total woody biomass is calculated for the period 1980 – now 
With uncertainty from increment, allometry, stand structure & 
mortality 

Alexander et al 2017a in revision TREES S&F 



• 4 EVERGREEN FORESTS: Niwot Ridge, Valles 
Caldera, Howland, and Duke Forest Loblolly Pine 

  

• 5 DECIDUOUS FORESTS: UMBS, Harvard, Missouri 
Ozark, Morgan Monroe, and Duke Forest 
Hardwoods 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 

Challenge the model’s structure – how well can CLM 
replicate biometric observations? 
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Challenge the model’s structure – how well can CLM 
replicate biometric observations? 
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Site: UMBS 

Line: Tree Ring ABG estimate 
Dots: Ameriflux Biometric AGB 

Reasonable consistency between Ameriflux Biomass (various 
methods) and our tree ring reconstructed biomass 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 



Variation, but reasonable consistency between Ameriflux Biomass 
and Tree Ring Reconstructed Biomass 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 



Malhi et al. 2011 

CARBON GAIN 

CARBON LOSS 

NET 
CARBON 
GAIN 



iiii BuNPPadtdB /

i= Plant pool i (leaves, stem, coarse roots and fine roots) 

Bi= Biomass of plant pool i (kg m-2) 

dt = 1 year 

ai= allocation coefficent for the plant pool i, and they add to 1. 

NPP= Net Primary Productivity (kg m-2 year-1) 

ui=turnover rate of plant pool i (year-1)  

 

PRODUCTIVITY TURNOVER 



iiii BuNPPadtdB /

PRODUCTIVITY TURNOVER 

C ALLOCATION SCHEME 



C ALLOCATION: ABOVEGROUND PRODUCTIVITY 



Overestimates 

Mixed results 

Above ground biomass at start of the run (1980)  mixed 
story but hints at D-Litton scheme 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 



Ameriflux StemC/Leaf C available for 4 sites 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 



Ameriflux StemC/Leaf C indicates D-Litton scheme 
works well 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 



30 year increase in biomass increment is NOT 
captured by any scheme 

DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 



iiii BuNPPadtdB /

PRODUCTIVITY TURNOVER 

C ALLOCATION SCHEME 
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DOE Regional and Global Climate Modeling DE-SC0016011 Montane et al. for GMD 

Stem turnover is poorly constrained – reasonable values 
for forests can account for model-data mismatch 



Hudson, Alexander & Moore (unpublished) 

Sites are not likely at steady state – “geographic average” 
of 2% is not likely appropriate 



CLM-DART an Earth System Model DA system 

DOE Regional and Global Climate Modeling DE-SC0016011 



DOE Regional and Global Climate Modeling DE-SC0016011 

Assimilating LAI from MODIS: Significant reductions in 
ensemble spread  



DOE Regional and Global Climate Modeling DE-SC0016011 

Assimilating LAI & Biometric Biomass 
*Currently implementing new CLM model routines 



 

• Site level OSSEs and real observation testing 
has shown biomass is a powerful constraint 

• In-situ biomass observations are rare – we 
have 14 sites US ~the same in EU 

• On-going remote sensing developments aim to 
measure biomass from space  

• In this example, we test the ability of the CLM-
DART DA system to assimilate 20,000 
“pseudo-observations” globally 

Observing System Simulation Experiments 



DOE Regional and Global Climate Modeling DE-SC0016011 

Using pseudo observations: ensemble spread of above 
ground biomass decreases (global data assimilation 
works) 

BEFORE AFTER 

OSSE 
‘data’ 



Courtesy Bill Kolby-Smith, UA 

Plans to assimilate global datasets in addition to site 
data. 
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• How to create initial ensemble spread – how large should it be? 

• How to maintain ensemble spread – is climate forcing variability 
the best approach? 

• What do we do about carbon/water balance – its lost at the 
moment and balance checks are removed? 

• What are the most informative observations to use?  

• What are the best temporal aggregation strategies for EC flux 
tower data? 

• Can we develop appropriate observation operators to link them 
with CLM state? 

• How can we best use an ensemble DA approach for parameter 
estimation – we can augment DART state vector with CLM 
parameters, but which ones? 

DOE Regional and Global Climate Modeling DE-SC0016011 
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Model Development – Leaf area to carbon ratio incorrectly 
specified in CLM 
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Flux 

Tree ring ‘biomass’ record 

Colors – CLM (different allocation schemes) 

CLM | Morgan Monroe 

Reconstructed Biomass 

Francesc Montane & Ross Alexander 

Building a data base of 
aboveground NPP based 
on tree rings  

DOE Regional and Global Climate Modeling DE-SC0016011 





MacBean, N., P. Peylin, F. Chevallier, M. Scholze, M., and G. Schürmann (2016) Consistent assimilation of multiple data streams in a carbon cycle 
data assimilation system, Geoscientific Model Development, 9, 3569-3588, doi:10.5194/gmd-9-3569-2016.  

a)	

b)	



MacBean, N., P. Peylin, F. Chevallier, M. Scholze, M., and G. Schürmann (2016) Consistent assimilation of multiple data streams in a carbon cycle 
data assimilation system, Geoscientific Model Development, 9, 3569-3588, doi:10.5194/gmd-9-3569-2016.  

a)	 b)	Step-wise	–	test	case	2a	

Step-wise	–	test	case	2c	c)	 d)	

Simultaneous	–	test	case	3a	e)	 f)	

s1 then s2 

s2 then s1 

Order of data stream 
assimilation 

s1 and s2 



Thum, T., N. MacBean, P. Peylin, C. Bacour, D. Santaren, B. Longdoz, D. Loustau and P. Ciais (2017) The potential benefit of using forest biomass 
data in addition to carbon and water flux measurements to constrain ecosystem model parameters: case studies at two temperate forest 
sites, Agricultural and Forest Meteorology, 234, 48-65. 

 Issues with using aboveground biomass increment vs aboveground biomass 

AGB increment always 
positive… 

… leads to worse fit to total AGB … 

… can improve after optimization with total AGB … 
 BUT residence time too low (40  ~17 years) 

Not accounting for disturbance and human activity 


