A data assimilation system for Land Surface Models – information from fluxes, phenology and biomass

David Moore, Francesc Montané, Ross Alexander, Valerie Trouet, Flurin Babst, Ave Arellano, Natasha MacBean, Amy Hudson *University of Arizona*

Tim Hoar, NCAR, Andrew Fox *University of Arizona/NCAR*,

Andrew Richardson, Harvard University Min Chen, Carnegie Institute

Spaghetti Carbon-Era*

**Pun courtesy of Dr Sarah J Ivory … pers comm*

Major fluxes of the C cycle

Ecosystem C Balance

Measurements

1.Direct flux measurement 2.Growth and Turnover

Growth Photosynthesis Autotrophic Respiration Heterotrophic Turnover respiration

Carbon residence time controls projections of future carbon stored in vegetation

Friend et al. PNAS 2014;111:3280 -3285

Net carbon balance is a SMALL difference between LARGE fluxes Net Ecosystem Exchange

(Net Accumulation in the atmosphere)

Net Ecosystem Productivity NEP (Net Accumulation in the Ecosystem)

Measuring fluxes

Photos: Ray Leuning

Global Distribution of Eddy Flux Towers - FLUXNET

How do we extract knowledge from all these sites to give us information about how carbon cycling respond to climate ?

ane NASA 2007 TerraMetrici

Streaming |||||||||| 100%

Image NASA

Image © 2007 TerraMetric

Google

Streaming ||||||||| 100%

What is data assimilation?

- Systematic combination of data and models
- Taking into account the uncertainties in both
- Process model provides an analytical framework
- If done well:
	- Modeled state becomes more consistent with observations (and hopefully with the truth!)
	- Makes forecasts more accurate (as initial conditions are improved)

Learning from flux data at ecosystem scales

CLM-DART an Earth System Model DA system

DOE Regional and Global Climate Modeling DE-SC0016011

CLM-DART Development Strategy

- 1. Multi-instance capability in CESM
- 2. CLM to DART coupling
- 3. CLM-DART setup scripts
- 4. Add observation processors
- 5. Test at site level with synthetic experiments
- 6. Test at site level with real observations
- 7. Test globally with synthetic experiments
- 8. Test globally with real observations
- 9. Iterate 4-7 as new observations are added

Site Level Data Assimilation Lessons

- Assimilate combinations of different observations
	- MODIS Leaf Area Index Product
	- Plot biomass estimates
	- Flux tower Net Ecosystem Exchange
- Having carried this out at a number of site, we consistently find assimilating LAI tends to reduce fit with NEE
- This suggests am issue with model structure

TESTING LAND SURFACE MODELS AT THREE DIFFERENT TIMESCALES USING THE AMERIFLUX NETWORK

YELLOW: PHENOCAM NETWORK

DOTS: AMERIFLUX SITES

BLACK: KNOWN BIOMETRIC DATA PINK: TREE RING SAMPLING

DOE Regional and Global Climate Modeling DE-SC0016011

TESTING LAND SURFACE MODELS AT THREE DIFFERENT TIMESCALES USING THE AMERIFLUX NETWORK

YELLOW: PHENOCAM NETWORK

DOTS: AMERIFLUX SITES

BLACK: KNOWN BIOMETRIC DATA PINK: TREE RING SAMPLING

DOE Regional and Global Climate Modeling DE-SC0016011

For effective data assimilation

The model and the data must have a common means of communication

- either the model predicts the data type being assimilated
- or we have a way to translating the data or model so that they can be compared statistically

The model should contain the processes that govern the data

the assimilation could fail or the resulting combination could be spurious

The uncertainty in the dataset should be well characterized

Otherwise either the model or the data will be given too much weight

Phenology Problems: CLM fAPAR mismatch in spring with MODIS fAPAR

Montane et al. *NACP 2015* **DOE Regional and Global Climate Modeling DE-SC0016011**

Modification of CLM phenology module: Addition of chilling process improves fit with MODIS data in North America

New Phenology Module parameterizing based on Phenocam data

Chen *et al*. 2016 Global Change Biology DOE Regional and Global Climate Modeling DE-SC0016011

Improved CLM phenology module translates to earlier springs in RCP8.5 projections

Chen *et al*. 2016 Global Change Biology DOE Regional and Global Climate Modeling DE-SC0016011

Tree rings - Linking the carbon cycle and climate Decadal-centennial constraints for Earth System Models

Increment cores can augment short term metrics like eddy covariance towers at seasonal, inter-annual and decadal-centennial timescales

Information content of tree increment cores can provide a constraint on Land Surface Models with respect to:

- 1. growth phenology
- 2. forest productivity
- 3. $CO₂$ fertilization
- 4. forest disturbances
- 5. vegetation model evaluation

Babst F, Alexander MR, Szejner P, Bouriaud O, Klesse S, Roden J, Ciais P, Poulter B, Frank D, Moore DJP, Trouet V (2014) A tree-ring perspective on the terrestrial carbon cycle *Oecologia* 176 (2), 307-322 OECO-D-14-00512

Observed forest sensitivity to climate implies large changes in 21st century North American forest growth

- (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western,southeastern and northeastern coasts;
- (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening';
- (3) It took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5.

Tree Rings and Terrestrial Biosphere Models

Rollinson et al 2017 *Glob Change Bio*

Tree Rings and Terrestrial Biosphere Models

Rollinson et al 2017 *Glob Change Bio*

Reconstructing stand level NPP dynamics

Real forests are complex

Sampling Tree Rings Ecologically

"We collected tree cores from 13 different sites from across the US. We traveled over 10K miles that summer to collect cores from over 1500 trees."

3000+ cores were mounted, sanded, cross dated, measured and statistically analysed. Ross Alexander, PhD

Alexander et al 2017a *in revision TREES S&F*

We can reconstruct the record of ring width for trees through time

CLM does not understand ring width index

DOE Regional and Global Climate Modeling DE-SC0016011

Ring width is translated to biomass increment using allometric relationships

Site: Valles Caldera

Alexander et al 2017a *in revision TREES S&F*

Total woody biomass is calculated for the period 1980 – now With uncertainty from increment, allometry, stand structure & mortality

Alexander et al 2017a *in revision TREES S&F*

Total woody biomass is calculated for the period 1980 – now With uncertainty from increment, allometry, stand structure & mortality

Alexander et al 2017a *in revision TREES S&F*

DOE Regional and Global Climate Modeling DE-SC0016011

Challenge the model's structure – how well can CLM replicate biometric observations?

- 4 EVERGREEN FORESTS: Niwot Ridge, Valles Caldera, Howland, and Duke Forest Loblolly Pine
- 5 DECIDUOUS FORESTS: UMBS, Harvard, Missouri Ozark, Morgan Monroe, and Duke Forest Hardwoods

Challenge the model's structure – how well can CLM replicate biometric observations?

Reasonable consistency between Ameriflux Biomass (various methods) and our tree ring reconstructed biomass

Montane et al. *for* GMD DOE Regional and Global Climate Modeling DE-SC0016011

Variation, but reasonable consistency between Ameriflux Biomass and Tree Ring Reconstructed Biomass

i= Plant pool i (leaves, stem, coarse roots and fine roots)

 B_i = Biomass of plant pool i (kg m⁻²)

dt = 1 year

a_{**i**} = allocation coefficent for the plant pool i, and they add to 1.

NPP= Net Primary Productivity (kg m⁻² year⁻¹)

u_i=turnover rate of plant pool i (year⁻¹)

C ALLOCATION: ABOVEGROUND PRODUCTIVITY

Above ground biomass at start of the run (1980) mixed story but hints at D-Litton scheme

Ameriflux StemC/Leaf C available for 4 sites

Ameriflux StemC/Leaf C indicates D-Litton scheme works well

30 year increase in biomass increment is NOT captured by any scheme

Montane et al. *for* GMD DOE Regional and Global Climate Modeling DE-SC0016011

C ALLOCATION SCHEME

Stem turnover is poorly constrained – reasonable values for forests can account for model-data mismatch

Sites are not likely at steady state – "geographic average" of 2% is not likely appropriate

Hudson, Alexander & Moore (unpublished)

CLM-DART an Earth System Model DA system

DOE Regional and Global Climate Modeling DE-SC0016011

Assimilating LAI from MODIS: Significant reductions in ensemble spread

 $Data$

Research Testbed

Assimilating LAI & Biometric Biomass

Data A -similation Researc Γ estbed

*Currently implementing new CLM model routines

DOE Regional and Global Climate Modeling DE-SC0016011

Observing System Simulation Experiments

- Site level OSSEs and real observation testing has shown biomass is a powerful constraint
- In-situ biomass observations are rare we have 14 sites US ~the same in EU
- On-going remote sensing developments aim to measure biomass from space
- In this example, we test the ability of the CLM-DART DA system to assimilate 20,000 "pseudo-observations" globally

Using pseudo observations: ensemble spread of above ground biomass decreases (global data assimilation works)

DOE Regional and Global Climate Modeling DE-SC0016011

Plans to assimilate global datasets in addition to site data.

Courtesy Bill Kolby-Smith, UA

References

Babst, F., Alexander, M. R., Szejner, P., Bouriaud, O., Klesse, S., Roden, J., Moore, DJP & Trouet, V. (2014). A tree-ring perspective on the terrestrial carbon cycle. Oecologia, 176(2), 307-322.

Chen, M., Melaas, E. K., Gray, J. M., Friedl, M. A., & Richardson, A. D. (2016). A new seasonal‐deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. *Global change biology*, *22*(11), 3675-3688.

Charney, N. D., Babst, F., Poulter, B., Record, S., Trouet, V. M., Frank, D., ... & Evans, M. E. (2016). Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecology Letters, 19(9), 1119-1128.

Melaas, E. K., Friedl, M. A., & Richardson, A. D. (2016). Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Global change biology, 22(2), 792-805.

Liu, Y., Hill, M. J., Zhang, X., Wang, Z., Richardson, A. D., Hufkens, K., ... & Schaaf, C. B. (2017). Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales. Agricultural and Forest Meteorology, 237, 311-325.

Alexander, M.R., C.R. Rollinson, F. Babst, V. Trouet, D.J.P. Moore. Uncertainty in tree-ring based aboveground biomass estimates does not substantially alter growth-climate relationships. Pending Revisions: Trees: Structure and Function *in revision*

Alexander, M.R., C.R. Rollinson, A. Dye, N. Pederson, D.J.P. Moore, V. Trouet. Differential climate responses exist among canopy strata in temperate forests of the eastern US. Submitted to Journal of Ecology *in review*

Montane, Fox, Arellano, Alexander, Dye, MacBean, Trouet, Babst, Hessl, Pederson, Bishop, Boher, Gough, Novick, Wood, Moore (*submitted*) Evaluating the effect of alternative carbon allocation schemes in a land surface model on carbon fluxes, pools and turnover in temperate forests Geophysical Model Development.

DOE Regional and Global Climate Modeling DE-SC0016011

Dye, A., Barker Plotkin, A., Bishop, D., Pederson, N., Poulter, B., & Hessl, A. (2016). Comparing tree‐ring and permanent plot estimates of aboveground net primary production in three eastern US forests. Ecosphere, 7(9).

NSF Macrosystems Biology 124185

Many big questions remain

- How to create initial ensemble spread how large should it be?
- How to maintain ensemble spread is climate forcing variability the best approach?
- What do we do about carbon/water balance its lost at the moment and balance checks are removed?
- What are the most informative observations to use?
- What are the best temporal aggregation strategies for EC flux tower data?
- Can we develop appropriate observation operators to link them with CLM state?
- How can we best use an ensemble DA approach for parameter estimation – we can augment DART state vector with CLM parameters, but which ones?

Model Development – Leaf area to carbon ratio incorrectly specified in CLM

Paleon Project "Settlement-Era" vegetation

Matthes et al. 2016 JGR-Biogeosciences Paciorek et al. 2016 PLoS-ONE

Building a data base of aboveground NPP based on tree rings

Colors – CLM (different allocation schemes)

Francesc Montane & Ross Alexander

DOE Regional and Global Climate Modeling DE-SC0016011

MacBean, N., P. Peylin, F. Chevallier, M. Scholze, M., and G. Schürmann (2016) Consistent assimilation of multiple data streams in a carbon cycle data assimilation system, *Geoscientific Model Development*, 9, 3569-3588, doi:10.5194/gmd-9-3569-2016.

MacBean, N., P. Peylin, F. Chevallier, M. Scholze, M., and G. Schürmann (2016) Consistent assimilation of multiple data streams in a carbon cycle data assimilation system, *Geoscientific Model Development*, 9, 3569-3588, doi:10.5194/gmd-9-3569-2016.

Thum, T., **N. MacBean**, P. Peylin, C. Bacour, D. Santaren, B. Longdoz, D. Loustau and P. Ciais (2017) The potential benefit of using forest biomass data in addition to carbon and water flux measurements to constrain ecosystem model parameters: case studies at two temperate forest sites, *Agricultural and Forest Meteorology*, 234, 48-65.

Issues with using aboveground biomass increment vs aboveground biomass

AGB increment always positive…

… leads to worse fit to total AGB …

… can improve after optimization with total AGB … *BUT* residence time too low (40 \rightarrow ~17 years) *Not accounting for disturbance and human activity*