
ORNL is managed by UT-Battelle 
for the US Department of Energy

Data and Model Synthesis for 
Process-Level Understanding of 

Terrestrial Ecosystems 

Anthony Walker 

Martin De Kauwe, Belinda Medlyn, Sönke Zaehle, 
Alistair Rogers, Shawn Serbin, 
Dan Lu, Ming Ye



Talk Outline
• Intro
• FACE Model Data Synthesis – 10 yr forest 

biomass responses to elevated CO2

• Multi-assumption modelling (MAAT)
• Model GPP evaluation against GPP 

proxies using PCA 
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Inherent uncertainty in ecosystem models precludes 
predictive understanding

Friedlingstein et al. 2014 J. of Clim.

Global scale C uptake Walker et al. 2015 Biogeochem. Cycles

Forest stand scale C uptake
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Friedlingstein et al. 2014

Global scale C uptake Walker et al. 2015

Forest stand scale C uptake

The first step towards predictive understanding is to 
properly characterise uncertainty and identify its sources
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Friedlingstein et al. 2014

Global scale C uptake Walker et al. 2015

Forest stand scale C uptake

The first step towards predictive understanding is to 
properly characterise uncertainty and identify its sources

• Alternative trait values                         
(uncertain parameters)
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Friedlingstein et al. 2014

Global scale C uptake Walker et al. 2015

Forest stand scale C uptake

The first step towards predictive understanding is to 
properly characterise uncertainty and identify its sources

• Alternative trait values                         
(uncertain parameters)

• Alternative hypotheses                        
(uncertain process knowledge)
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A mechanistic description of how a process works.

Hypothesis

synonyms: 
• process representation 
• model structure
• assumption (not exactly)
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Biological 
system

Process 
A

Process 
C

Process 
B

Input

Output

Systems are composed of multiple processes
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Biological 
system

Alternative Process 
Hypotheses

Process 
A

Process 
C

Process 
B

Input

Output

A1 A2 A3

B1 B2

C1 C2 C3

Competing hypotheses can exist for each process
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Resulting in multiple possible models of the system

Model of
system

Alternative Process 
Hypotheses

A1

C1

B1

Input

Output

A1 A2 A3

B1 B2

C1 C2 C3
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Model of
system

Alternative Process 
Hypotheses

A1

C3

B2

Input

Output

A1 A2 A3

B1 B2

C1 C2 C3

18 possible system models 
in this simple example 

… but alternative models are possible



FACE Model Data Synthesis

A model inter-comparison evaluated 
against FACE data 



Biomass responses to eCO2

Rhinelander ORNL Duke KSC

MAT [°C] 6.0 (0.8) 14.8 (0.9) 14.8 (0.6) 22.1 (0.4)

MAP [mm] 662 (122) 1221 (218) 1081 (168) 1094 (207)

MAPET [mm] 1187 (178) 1483 (78) 1494 (53) 2391 (156)

MI 0.57 (0.15) 0.74 (0.17) 0.65 (0.14) 0.46 (0.10)

MAT – mean annual temperature, MAP – mean annual precipitation, MAPET – mean annual 
potential evapotranspiration calculated using the Penman-Monteith equation assuming zero canopy 
resistance. MI – Moisture index (MAP/MAPET). Standard deviation in parentheses.
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Models

Schematic of the 11 models of the first phase of the FACE Model Data Synthesis project 
showing common processes but different ways in which those processes are represented

Walker et al. 2014 JGR Biogeosci.
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10 year response of NPP and Biomass C increment to eCO2

Cumulative NPP (cNPP) response

Biomass C increment (Cincveg) response

Walker et al. In Review



16 RUBISCO SFA Science Friday 20th October 2017

Meta-analysis using mixed-effects regression models 

Walker et al. In Review
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Meta-analysis using mixed-effects regression models 

Walker et al. In Review
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Plot level relationship of Cincveg to cNPP

aCO2 eCO2

Rhin.
ORNL
Duke
KSC

Walker et al. In Review
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Meta-analysis using mixed-effects regression models 

Walker et al. In Review

No direct CO2 effect on Cincveg!
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aCO2 eCO2

Rhin.
ORNL
Duke
KSC

Walker et al. In Review

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 = ∆𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐.
𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣
𝑑𝑑𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐

Cincveg response can be predicted by cNPP response and 
slope of the relationship
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Meta-analysis using mixed-effects regression models 

Walker et al. In Review
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Assuming wood allocation dominates veg turnover, 
biomass production rate can be calculated:

𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣
𝑑𝑑𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑓𝑓𝑓𝑓𝑎𝑎 + 2
𝑑𝑑𝑓𝑓𝑓𝑓
𝑑𝑑𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐



23 RUBISCO SFA Science Friday 20th October 2017

Model ensemble Cincveg response
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 = ∆𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐.
𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣
𝑑𝑑𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐

Model ensemble Cincveg response
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Model ensemble Cincveg response

𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣
𝑑𝑑𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑓𝑓𝑓𝑓𝑎𝑎 + 2
𝑑𝑑𝑓𝑓𝑓𝑓
𝑑𝑑𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐
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NPP & N response to eCO2, Duke

ΔNPP ΔNup ΔNUE

NPP = Nup x NUE   
ΔNPP = ΔNup x ΔNUE   
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NPP & N response to eCO2, Duke

ΔNPP ΔNup ΔNUE

NPP = Nup x NUE   

Models generally captured the initial NPP 
response response but confounded the Nup
response with the NUE response.
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NPP & N response to eCO2, Duke

NPP increased by the end of the experiment, all but one model predicted a 
decrease. Increased Nup was not sustained by the models

ΔNPP ΔNup ΔNUE ΔNPP ΔNup ΔNUE
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Changes in C 
allocation in 
response to 
eCO2, Duke
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FACE-MDS Phase-1 Summary

Medlyn et al. 2015 Nature Clim. Change

Photosynthesis

Transpir-
ationFoliar N

Stomatal 
conduct-

ance

Rainfall 
interception

Turnover

Priming

Belowground C

LMA

N losses

N availability

Better estimates of 
N losses needed

Large model 
variability in 

wood turnover.

Model variability 
in simulating 

drought effects.
Model variability in 
rainfall interception. 

Model sensitivity 
to stomatal 
conductance 
varied.

Model variability in 
the ratio of light- or 
CO2-limited 
photosynthesis. 

Models treated 
LMA as a 
constant.

Model C:N 
stoichiometry  too 

flexible.

Models under-
estimated N 

uptake.

Dynamic allocation 
assumptions 
performed best.

C and N 
coupling 
should be 
flexible.

Water use 
efficiency 
should be 

proportional to 
Ca.

Drought



31 RUBISCO SFA Science Friday 20th October 2017

FACE-MDS 10 yr Biomass Summary

• A sustained long-term stimulation of forest biomass in 
response to CO2 concentrations predicted for the middle of the 
century was clearly demonstrated. 

• Modelling this is site specific:
– At ORNL uncertainty was too high in 10 year biomass response

– At KSC the temperature by CO2 interaction was not observed

– At Rhin and Duke NPP was under-predicted due to inability to 
increase N uptake AND allocation response to CO2 was too low



MAAT & multi-hypothesis 
modeling
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Traditional models use only single hypotheses

Model of
system A1

C1

B1

Input

Output
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Multi-hypothesis modeling

Model of
system

Alternative Process 
Hypotheses

A1-3

C1-3

B1-2

Input

Output

A1 A2 A3

B1 B2

C1 C2 C3

18 possible system models 
can be combined
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Multi-Assumption Architecture & Testbed (MAAT)

• A multi-hypothesis software framework developed to allow system model 
configuration with process hypotheses, parameters (traits), and boundary 
conditions on-the-fly during runtime

• Designed to analyze the variation in system model outputs caused when multiple 
competing hypotheses exist for multiple processes (considers parameter 
variability)

• Framework is general and not system specific
• Currently applied to modelling leaf-scale photosynthesis 
• Can mimic ALM, CLM, LM3, JULES, BETHY, + others … or can create and run 

all possible model combinations
• Employs a novel algorithm for process-level global sensitivity analysis (Dai, et al.

2017 WRR), as well as for global parameter sensitivity analysis (Saltelli et al., 
2010)

Walker et al. In Prep
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Mimicking & unifying CMIP5 models

Rogers et al. In Prep
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Mimicking & unifying CMIP5 models

Rogers et al. In Prep
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Mimicking & unifying CMIP5 models

Rogers et al. In Prep
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Friedlingstein et al. 2014

Global scale C uptake Walker et al. 2015

Forest stand scale C uptake

The first step towards predictive understanding is to 
properly characterise uncertainty and identify its sources

• Alternative trait values                         
(uncertain parameters)

• Alternative hypotheses                        
(uncertain process knowledge)
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Graph of the enzyme kinetic model of C3 photosynthesis:

KEY

Environment/ 
Input

Parameter

Process

State VariableCarbon 
Assimilation (A)

Limiting 
Cycle
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Jmax

wc
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Ci

wj
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Kc Ko Vcmax
bjvajv

Electron Transport
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α btv
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Graph of the enzyme kinetic model of C3 photosynthesis:

KEY

Environment/ 
Input

Parameter

Process

State VariableCarbon 
Assimilation (A)

Limiting 
Cycle

Γ*

Jmax

wc

J

kc:kc

fa Θj

I

Ci

wj

Θcj

Kc Ko Vcmax
bjvajv

Electron Transport

Carboxylation

Θcjp

wp

α btv

Tpu

Limiting Cycle
• Farquhar et al 1980
• Collatz et al 1991

Electron transport
• Farquhar & Wong 1984
• Collatz et al. 1991
• Harley et al. 1992

Yellow outlined 
processes/parameters 

were varied in the 
sensitivity analysis
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Variability in carbon assimilation
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Process Sensitivity Index against CO2

Walker et al. in prep
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Parameter Sensitivity Index

Walker et al. In Prep



Evaluation of global GPP
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GPP
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PCA as a model evaluation tool

Walker et al. (2017) New Phyt.
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PCA suggests the first mode of 
spatial GPP variability is driven by 

precipitation
PC1 Scores

PC2 Scores
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PC4 segregates SIF based GPP 
from precipitation

Walker et al. (2017) New Phyt.
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PC4 segregates SIF based GPP 
from precipitation

PC3 Scores

PC4 Scores
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Quick Summary
• Process based model analysis is useful and interesting
• A number of methods are out there including:

– Variable decomposition
– Comparison against simple models

(not shown, but used in FACE-MDS)
– Multi-assumption modelling
– PCA (not strictly process based, but can be used to observed 

patterns and support process based hypotheses)



Thanks to you, collaborators, and 
sponsors
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Single process multi-hypothesis modeling

Model of
system

Alternative Process 
Hypotheses

A1-3

C1

B1

Input

Output

A1 A2 A3

B1 B2

C1 C2 C3
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… but additional processes come with the cost of 
additional uncertainty & model complexity

Model of
system

Alternative Process 
Hypotheses

A1-3

C1-3

B1-2

Input

Output

A1 A2 A3

B1 B2

C1 C2 C3

54 possible system models with 
a single additional process 

D1 D2 D3
D1-3
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