Influence of phosphorus cycle coupling on land model response to changes in atmospheric CO₂ and climatic

> Xiaojuan Yang, Peter Thornton, Dan Ricciuto, Wilfred Post, Forrest Hoffman

Oak Ridge National Laboratory Oak Ridge, TN 37831

ORNL is managed by UT-Battelle for the US Department of Energy

Nutrient limitation will reduce the global land carbon storage projected by CMIP5 C-only models

CLM-CNP Phosphorus Pools and Fluxes

Litter bag studies – evaluation of P dynamics during decomposition

- Stoichiometric relationship can explain P dynamics during decomposition when there is adequate available P in soils.
- P cycle can be decoupled from C and N during decomposition when soil available P is in short supply, due to biochemical mineralization of organic P
- Measurement data from McGroddy et al.

(2004)

CLIMATE CHANGE SCIENCE INSTITUTE OAK RIDGE NATIONAL LABORATORY

Introduction of P limitation improved model simulated NPP in tropical forests

- Observations show that NPP tends to decrease with decreasing soil P availability
- Model simulations using CNP model capture the overall trend in NPP along the P availability gradient
- Site characteristics and land use history need to be considered to explain the discrepancy between models results and observations

(Yang et al., 2014)

Mean annual simulated fluxes for the period 2000-2009

- Improved heterogeneity of simulated GPP & NPP in CNP model.
- NPP decreases from west to east across the Amazon basin following the gradient of total soil P.
- Spatial pattern of NPP consistent with field observations(Quesada et al., 2012; Aragão et al., 2011; Malhi et al., 2004).
- Comparison with satellite products in progress.

(Yang et al., 2015, in revision)

Exploratory model experiments

- Question: how does nutrient cycling interact with increasing [CO₂] and warming to affect future C uptake in the Amazon region?
- Three exploratory simulations (2010-2050)
 - #1 : 2CO2
 - -#2:+4 °C
 - #3 : +4 °C and constant RH

2CO2

• Elevated CO₂ increases WUE and reduces water stress, especially in drier areas.

 Phosphorus becomes more limiting under elevated CO₂ condition.

(Yang et al., 2015, in revision) CLIMATE CHANGE SCIENCE INSTITUTE OAK RIDGE NATIONAL LABORATORY

2CO2

 Productivity is enhanced with elevated CO2, especially in drier regions because of improved WUE.

 CO2 fertilization effect is constrained by P availability in lowland tropical forests on highly weathered soils.

(Yang et al., 2015, in revision)

Enhanced phosphatase activity under elevated CO₂ could alleviate P limitation

NPP(Default model parameters for phosphotase activity)

NPP(Enhanced phosphatase activity)

Oak Ridge National Laboratory

Warming(+4°C)

• Higher temperature leads to deepening of dry season water stress.

Annual Means of P mineralization(gPm ⁻²yr ⁻¹)

Warming(+4°C)

• Wet season GPP is increased due to enhanced nutrient mineralization.

Annual means of NPP(gCm ⁻²yr ⁻¹)

 Autotrophic respiration response to warming greatly limits NPP response.

(Yang et al., 2015, in revision)

CLIMATE CHANGE SCIENCE INSTITUTE

OAK RIDGE NATIONAL LABORATORY

The effect of maintaining constant RH

NPP

(Yang et al., 2015, in revision)

Global Simulations

- CLM4-CNP and CLM4-CN
- 0.5-by-0.5 degree
- Offline mode
- Steady-state simulations (Pre-industrial spinup)
- Transient simulations
 - CRU-NCEP reanalysis fields 1901-2009
 - historical [CO₂]

Distribution of N vs. P limitation

Phosphorus cycle dynamics reduce the sensitivity of global NEE to variations in temperature and precipitation

- Global integrated NEE against variations in global mean temperature and precipitation, assessed using multiple leastsquares regression, following the methodology of Thornton et al. (2007)
- In particular, CN model shows significant negative relationship between NEE and precipitation, but slope is reduced for CNP model

NEE sensitivity to variations in temperature and precipitation (CLM-CNP vs. CLM-CN)

CLIMATE CHANGE SCIENCE INSTITUTE Oak Ridge National Laboratory

The role of phosphorus in tropical ecosystem responses to changes in [CO₂] and climate

- P limitation leads to a reduced CO2 fertilization effect
- Carbon release associated with historical climate change is reduced with P coupling, as warming induced mineralization may lead to indirect fertilization effect in P-limited ecosystems

The role of phosphorus in tropical ecosystem responses to changes in [CO₂] and climate

Summary

- The introduction of P cycling and limitation improved model simulated NPP at site-level and heterogeneity of simulated GPP & NPP across the Amazon region, relative to the original CLM-CN model.
- Introduction of P coupling leads to a smaller CO₂ fertilization effect and warming-induced CO₂ release from tropical ecosystems
- P cycle dynamics tend to reduce the sensitivity of NEE to interannual variation in temperature and precipitation

Path forward

